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ABSTRACT
A water deficit in the soil can cause water stress in plants, triggering morphological and 
physiological changes. The aim of this work was evaluate the ecophysiological development of 
moringa seedlings under controlled water restriction. The experimental design was completely 
randomized at 40, 60, 80, and 100% of field capacity and six replicates. The photosynthetic 
CO2 assimilation, stomatal conductance, transpiration, vapor pressure deficit, internal carbon 
concentration, chlorophyll a, chlorophyll b, and total chlorophyll and stem diameter, height, 
and number of leaves were measured at 9 a.m. during 21 days of restriction. The treatments 
differed for photosynthetic parameters. Moringa seedlings reduce gas exchange to adapt to water 
restrictions until 40% of field capacity. The alterations promoted by water restriction did not 
negatively affected plant development.
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1. INTRODUCTION

Under tropical conditions, agricultural yield can be 
negatively affected by a number of biotic and abiotic 
stresses that alter plant growth and development. In this 
context, nutrient deficiencies, such as nitrogen and 
phosphorus limitations, and stresses caused by low 
water availability and high temperatures have been 
frequently highlighted (Silva et al., 2012a).

A water deficit is one of the most severe and 
common types of abiotic stress that affects crops grown 
in semiarid environments. The effect is evident at any 
plant growth stage and may vary according to the 
severity and duration of the stress (Farooq et al., 2009).

A water deficit in the soil can cause water stress 
in plants, triggering morphological and physiological 
changes. Low water availability can elicit reductions in 
cellular expansion, leaf area, the root to shoot biomass 
ratio, and photosynthesis and can promote stomatal 
closure and increased leaf abscission (Taiz & Zeiger, 
2009). When plants are exposed to a water deficit, 
they frequently exhibit physiological responses that 
indirectly result in water conservation in the soil, as if 
the plants were saving the water for a later time period 
(Souza & Lima, 2012).

Plants require large water and nutrients quantities 
throughout their life cycle, and all aspects of plant 
development are affected by low soil moisture content. 
Low soil moisture content causes changes in the 
physical environment at soil, which subsequently 
affect physiological and biochemical processes at plant 
(Sarker et al., 2005).

In a study of the species Gethyllis multifolia and 
Gethyllis villosa, which grow in semiarid southern 
Africa, G. multifolia was suggested to be more sensitive 
to water than G. villosa, and both species adopted 
specific morphological changes in their leaves under 
shade conditions. During drought stress, compared 
with G. multifolia, G. villosa exhibited an increased 
photosynthetic performance that appeared to be unrelated 
to leaf adaptations, and G. villosa leaves maintained 
their stomatal conductance (gs), photosynthetic light 
compensation (LCP), and photon fields at greater levels 
(Daniels et al., 2013).

Several species have been studied to observe their 
behavior under water restriction at some stage of 

development, initial or adult, such as Jatropha curcas 
(Padilha  et  al., 2016), Campomanesia adamantium 
(Dresch et al., 2016), Eucalyptus urograndis (Costa et al., 
2015), Tabebuia aurea (Cabral et al., 2004), Guazuma 
ulmifolia (Scalon et al., 2011), Schizolobium amazonicum 
[S. parahyba var. amazonicum], and Schizolobium 
parahyba [Schizolobium parahybum] (Carvalho, 2005).

Several parameters have been assessed to evaluate the 
response of plant species to water restrictions, including 
leaf water potential, osmotic potential and relative 
water content, stomatal conductance and transpiration, 
leaf temperature, and proline accumulation. However, 
studies of this nature have not been conducted for 
moringa, which has high potential for planting under 
semiarid conditions.

Thus, an ecophysiological study of moringa during 
its early growth stage is extremely important, mainly 
by helping to establish ecophysiological parameters 
indicative of tolerance to abiotic stress. When these 
parameters are well managed, they can improve seedling 
production and establishment and thus facilitate the 
selection of genetic material resistant to stressful 
edaphoclimatic conditions.

Moringa (Moringa oleifera) is a Indian fast growing 
species that has a good development in the Brazilian 
semi-arid that requires little care regarding forest 
management. It is a species that presents several uses, 
from lubricant to medicine, and most used parts of 
the plant are the seeds, because it is rich in oil, and 
the leaves are rich in nutrients for use in human and 
animal food.

Thus, this study aimed to evaluate the ecophysiological 
(photosynthetic CO2 assimilation, stomatal conductance, 
transpiration, vapor pressure deficit between the leaf 
and the air, internal carbon concentration, chlorophyll 
a, chlorophyll b, and total chlorophyll) and biometric 
(stem diameter, height, and number of leaves) 
development of M. oleifera seedlings subjected to 
controlled water restriction.

2. MATERIALS AND METHODS

The experiment was performed at the Federal 
University of Sergipe campus (Campus da Universidade 
Federal de Sergipe – UFS), located in the municipality of 
São Cristóvão, state of Sergipe (SE), Brazil, geographical 
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coordinates 19°59’24.3”S 37°05’59.3”W, in the period 
from January to March 2013. During the experimental 
period, the environmental conditions inside of the 
greenhouse, represented by the mean temperature 
and mean relative humidity of the air, as measured 
daily with a thermohygrometer, were 35.7 ± 3°C and 
51 ± 6.5%, respectively.

Seedlings of a single genotype (matrix) grown from 
seeds that had been harvested in the municipality of 
Aracaju were used. The seedlings were cultivated in 13 L 
polypropylene pots and maintained in a greenhouse 
under natural light. The substrate was composed of 
washed sand, clay, and cattle manure in a 1:1:1 ratio. 
The substrate (in the pots) was maintained at field 
capacity for 50 days, and then a 21-day period of water 
restriction was imposed. The pots containing the plants 
were weighed on a balance (precise to three decimal 
places) daily, always at the same time, to determine the 
quantity of water consumed, and then a corresponding 
volume of water was added to the pot to maintain the 
water capacity of each treatment.

The experiment was conducted in a completely 
randomized design with four treatments (40, 60, 80, and 100% 
field capacity) and six replicates. Each plot consisted 
of 13 L pot with one plant. In order to determine soil 
water capacity, the pots were saturated in a box with 
water volume equivalent to two thirds of pot height 
during 24 h. The box was covered with plastic film to 
avoid evaporation and placed to drain freely, being 
measured their masses after 24 h (Casaroli & Van 
Lier, 2008).

Gas exchange was measured on fully expanded 
mature leaves, with average value of three leaflets 
per plant, located in the middle third of each 
plant using an IRGA infrared gas analyzer (model 
LI-6400xt, LI-color Nebraska, USA) with an air 
flow of 300 mL min-1 and a coupled light source of 
1,500 µmol m-2 s-1. The measurements were collected at 
9 a.m. The following gas exchange data were obtained: 
photosynthetic CO2 assimilation (A), stomatal 
conductance (gs), transpiration (E), vapor pressure 
deficit between the leaf and the air (VPDleaf-air), and 
internal carbon concentration (Ci).

A non-destructive method was used to determine 
the chlorophyll a, chlorophyll b, and total chlorophyll, 
using a ClorofiLOG (Falker) meter that can obtain 

instantaneous readings of the relative chlorophyll in 
a leaf. The measurements were collected from fully 
expanded mature leaves, with average value of three 
leaflets per plant, from the middle third of each plant 
at the same time interval as the other analyses.

The biometric parameters were measured in all 
of plants every weekly during the 21 days of water 
restriction. The total height was measured for the stem 
of each plant using a centimeter tape measure. The stem 
diameter was measured at approximately 10 cm from 
the soil using a digital caliper. The leaf number was 
determined by counting the expanded leaves on each 
plant. The fresh and dry masses of the shoots and of 
the root systems were determined at the end of the 
experiment. The shoots were separated from the root 
system (the roots were washed and dried in the shade 
to remove excess substrate), weighed, and dried in a 
forced-circulation oven at 60°C to a constant weight 
to obtain the dry mass.

The data were subjected to analysis of variance, 
evaluating the significance of the F test at the 5% 
probability level and regression analysis using the 
SISVAR® program (Ferreira, 2008).

3. RESULTS

The ecophysiological parameters (photosynthetic 
CO2 assimilation, stomatal conductance, internal 
carbon concentration, transpiration, and vapor 
pressure deficit between the leaf and the air) of the 
moringa seedlings differed significantly among water 
restriction treatments.

With an increase in water restriction, the photosynthetic 
CO2 assimilation rate, internal carbon concentration 
and transpiration all decreased (Figure 1).

In contrast to the gas exchange results, the chlorophyll 
a, chlorophyll b, and total chlorophyll levels of the 
moringa seedlings did not differ significantly among 
water restriction levels (p > 0.05) (Figure 2). However, 
chlorophyll a was present at approximately three-fold 
higher levels in the plants than chlorophyll b.

Similar to the chlorophyll results, the evaluated 
biometric parameters of the moringa seedlings also 
did not differ significantly (p > 0.05) among water 
restriction treatments (Figure 3).
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Figure 1. Photosynthetic CO2 assimilation (A), stomatal conductance (B), internal carbon concentration (C), 
transpiration (D), and vapor pressure deficit between the leaf and the air (E) of Moringa oleifera Lam. seedlings 
subjected to water restrictions.

Figure 2. Chlorophyll a (Chl a), chlorophyll b (Chl b), total chlorophyll (Chl T), and the ratio of Chl a/b of Moringa 
oleifera Lam. seedlings subjected to water restrictions.
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4. DISCUSSION

The ecophysiological and biometric parameters 
of moringa were analyzed to evaluate the effects of 
the intensity of the stress caused by water deficit on 
the photosynthetic apparatus of moringa seedlings 
subjected to controlled water restriction. The water 
deficits did not cause severe damage to the moringa 
seedlings; there was no change in stomatal conductance 
compared to extreme levels of restriction, which 
constitutes one of the first strategies employed by 
plants to reduce transpiration and to maintain turgor 
pressure (Eckstein & Robinson, 1996).

The ecophysiological parameters (photosynthetic 
CO2 assimilation, internal carbon concentration, 
transpiration, and vapor pressure deficit between the 
leaf and the air) decreased with an increase in the 
severity of the water restriction. Water deficit normally 
leads to a decrease in the photosynthetic rate, although 
tolerance levels may vary for different plant species 
(Scalon et al., 2011).

Similar results for photosynthetic CO2 assimilation, 
stomatal conductance, and transpiration were reported 
by Rivas  et  al. (2013), who subjected 50-day-old 
M. oleifera plants to two stress cycles (the first lasted 
10  days and the second lasted 8 days), subjecting 

Figure 3. Total height (A), stem diameter (B), number of leaves (C), fresh mass (D), and dry mass (E) of Moringa 
oleifera Lam. seedlings subjected to water restrictions.
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plants to 10% of the pot field capacity and rehydration 
between the stress cycles.

Stress usually increases the diffusive resistance to 
water vapor by triggering stomatal closure, reducing 
transpiration and, consequently, the supply of CO2 for 
photosynthesis (Nogueira et al., 1998). However, what 
happened to the transpiration of moringa seedlings 
was the same found for some species of the Caatinga, 
in which the reduction in transpiration values in some 
species gave to the availability of water in the soil than 
by stomatal closure (Silva et al., 2004); for example, 
when plants are subject to drought cycles, they can 
develop specific responses to low water availability 
that allow for the maintenance of transpiration for 
longer periods under these conditions (Larcher, 2006).

Another factor that corroborates the claim that the 
seedlings did not undergo severe damage as a result of 
exposure to water restrictions is that the chlorophyll 
levels remained constant during the restriction 
period. Moreover, it was maintained with a ratio of 
chlorophyll a and b of 3:1, suggesting that, in terms 
of the chlorophyll levels, the plants were exposed to 
normal conditions (Taiz & Zeiger, 2009). Chlorophylls 
are a group of photosynthetic pigments present in 
the chloroplasts of plants that are responsible for 
capturing solar radiation to transmit energy and they 
impart the green color to plants (Marenco & Lopes, 
2005). Deficiencies in chlorophyll are recognizable by 
the presence of a pale color, or chlorotic leaf, and are 
associated with considerably reduced photosynthetic 
rates (Larcher, 2006).

When subjected to salt stresses of 0, 75, and 150 mM 
of NaCl, the photosynthetic pigments of 30-day-old 
moringa plants also did not differ significantly among 
treatments, but did contain higher levels after treatment 
with a higher saline concentration (Silva et al., 2012b).

Similar gas exchange results have been reported for 
umbu plants (Spondias tuberosa) in the dry season as 
a mechanism for the plants to adapt for their survival 
(Lima, 2004). Thus, the moringa seedlings underwent 
an adaptive process in response to the water deficit 
in the soil.

Aroeira (Schinus terebinthifolius) is moderately 
tolerant to low levels of water restriction in the soil, 
and young aroeira plants perform better when grown 
with a water supply of 75% of field capacity and can be 
grown with water levels as low as 50% of field capacity 

without exhibiting any significant morphological or 
physiological changes (Silva et al., 2008).

The moringa biometric parameters remained 
stable during the restriction process. According to 
Taiz & Zeiger (2009), this happens because many plant 
physiological processes are affected by water deficit. 
As plant growth is controlled by cell division, followed 
by cell expansion, insufficient water maintains cells that 
growing zones under conditions. Thereby, it reducing 
cell division coefficient and all cells expansion, thus 
preventing plants vegetative growth.

Padilha et al. (2016) studied initial jatropha growth 
under a water restriction regime (20, 40, 60, 80 and 
100% of soil water retention capacity). It was obtained 
because water regimes of 60 and 80% provide the best 
responses for physiological and growth variables in 
the initial phase. However, regimes lower than 60% 
and greater than 80% induce signs of water stress in 
young jatropha plants.

For C. adamantium, Dresch et al. (2016) observed 
that low water availability (retention capacities of 
25 and 50%) reduces these plants growth rates and 
their green and dry biomasses production. The biomass 
production is limited by stomata closure mechanism 
and leaf area reduction, since it causes, respectively, 
a decrease in CO2 fixation and light interception 
(Silveira et al., 2016).

As moringa has survival strategies under water 
restriction, mulungu (Erythrina velutina) seedlings have 
potential to develop xeromorphic characteristics, such 
as defoliation and greater root development. However, 
the seedlings production cannot be in water restriction 
conditions, so it can guarantee its better vegetative 
development (Oliveira et al., 2016).

Although water stress altered the physiological 
attributes values, there were no negative effects/reflexes 
on the plant growth (at levels and time imposed). 
It indicates they were adapted to reduce plant water 
losses so it did not impair their development.

A given plant species can overcome adverse 
environmental conditions, i.e., may exhibit varying 
performance, which is reflected as plasticity. Thus, 
physiological evaluations cannot be restricted to a 
single genotype and must also consider performance 
under highly diverse water restriction conditions to 
test for differential plasticity.
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The plants performance observation in the early 
development stages during stress situations allows 
better understanding about their survival in natural 
environments, where condition can be the most adverse 
as possible without a control intervention.

5. CONCLUSION

M. oleifera seedlings have the ability to reduce gas 
exchange under water restrictions as severe as 40% of 
field capacity to adapt to these conditions and maintain 
their survival. Despite physiological changes promoted 
by the water deficit, there was no negative effect on 
plant growth until the level and time of stress imposed.
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