25APR

FLORAM receives Impact Factor

We are pleased to announce that FLORAM has received its first impact factor rating in the 2022 Journal Citation Reports (JCR).

Now FLORAM has the highest impact factor among Brazilian Forest Sciences journals.

Floresta e Ambiente
https://www.floram.org/article/doi/10.1590/2179-8087-FLORAM-2022-0049
Floresta e Ambiente
Original Article Forest Products Science and Tecnology

Wood Metabolites of Myrcia insularis Gardner (Myrtaceae) have Potential Anti-Candida Activity

Gabriel do Amaral Ferreira, Glaziele Campbell, Michel Souza Passos, Gabriel Bonan Taveira, Kathlyn Vasconcelos Gevú, Ivo José Curcino Vieira, Valdirene Moreira Gomes, Maura Da Cunha

Downloads: 0
Views: 180

Abstract

The present work aimed to isolate secondary metabolites from Myrcia insularis Gardner (Myrtaceae) wood and to evaluate the anti-Candida activity and further extracts obtained by partition and the respective main isolated compounds. Wood was collected in a Seasonal Semideciduous Forest remnant of the Atlantic Forest of northern Rio de Janeiro State, Brazil. Chromatographic and spectrographic techniques were used to isolate and identify secondary metabolites. Methanol extract inhibited the growth of Candida buinensis and Candida tropicalis, with inhibition being approximately 82% for the latter. The main compound isolated from the ethyl acetate partitions was arjunolic acid, a triterpene. The antimicrobial activity was first observed with the wood metabolites of M. insularis adds to our understanding of the antifungal properties of this species and other species within the Myrtaceae family, including the presence of arjunolic acid, which may play a role in this activity.

Keywords

Atlantic Forest; phytochemistry; triterpene; antifungal activity; arjunolic acid

References

  • Afroz M, Akter S, Ahmed A, Rouf R, Shilpi JA, Tiralongo E, Uddin SJ. Ethnobotany and antimicrobial peptides from plants of the solanaceae family: an update and future prospects. Frontiers in Pharmacology 2020; 11(565):1-15.

  • Ahmed S, Hasan M, Mahmood Z. Antiurolithiatic plants: multidimensional pharmacology. Journal of Pharmacognosy and Phytochemistry 2016; 5(2):4-24.

  • Alexandrino CR, Carvalho LP, Melo EJT, Mello EO, Gomes VM, Callado CH, Da Cunha M. Bioactivity of leaf extracts from species of Palicourea (Rubiaceae) on Trypanossoma cruzi, Candida sp and Fusarium solari. European Journal of Biomedical and Pharmaceutical Sciences 2016; 3(6):489-496.

  • Al-Snafi A. Therapeutic properties of medicinal plants: a review of their dermatological effects (part 1). International Journal of Pharmacy Review & Research 2015; 5(4):328-337.

  • An NTG, Huong LT, Satyal P, Tai TA, Dai DN, Hung NH et al. Mosquito larvicidal activity, antimicrobial activity, and chemical compositions of essential oils from four species of Myrtaceae from central Vietnam. Plants 2020; 9(544.):1-20.

  • Andrade GS, Guimarães AG, Santana MT, Siqueira RS, Passos LO, Machado SMF, Adauto de S. Ribeiro AS, Sobral M, Almeida JRGS, Quintans-Júnior LJ. Phytochemical screening, antinociceptive and anti-inflammatory effects of the essential oil of Myrcia pubiflora in mice. Brazilian Journal of Pharmacognosy 2012; 22(1): 181-188.

  • Araújo FF, Neri-Numa IA, Farias DP, Cunha GRMC, Pastore GM. Wild Brazilian species of Eugenia genera (Myrtaceae) as an innovation hotspots for food and pharmacological purposes. Food Research International 2019; 121:57-72.

  • Batiha GE, Alkazmi LM, Wasef LG, Beshbishy AM, Nadwa EH, Rashwan EK. Syzygium aromaticum L. (Myrtaceae): Traditional uses, bioactive chemical constituents, pharmacological and toxicological activies. Biomolecules 2020; 10(202):1-16.

  • Bisoli E, Garcez WS, Hamerski L, Tieppo C, Garcez FR. Bioactive pentacyclic triterpenes from the stems of Combretum laxum. Molecules 2008; 13(11): 2717-2728.

  • Broekaert WF, Terras FR, Cammue BP, Vanderleyden J. An automated quantitative assay for fungal growth inhibition. FEMS Microbiology Letters 1990; 69(1-2):55-59.

  • Buck DS, Nidorf DM, Addino JG. Comparison of two topical preparations for the treatment of onychomycosis: Melaleuca alternifolia (tea tree) oil and clotrimazole. The Journal of family practice 1994; 38(6):601-605.

  • Cascaes MM, Guilhon GMSP, Andrade EHA, Zoghbi MGB, Santos LS. Constituents and pharmacological activies of Myrcia (Myrtaceae): a review of an aromatic and medicinal group of plants. International Journal Molecular Sciences 2015; 16(10):23881-23904.

  • Cascaes MM, Guilhon GMSP, Zoghbi MGB, Andrade E. Flavonoids, antioxidant potential and antimicrobial activity of Myrcia rufipila McVaugh leaves (Myrtaceae). Natural Product Research 2019; 35(4): 1-5.

  • Cavalcanti, YW, Almeida LFD, Padilha WWN. Screening of essential oils’ antifungal activity on candida strains. Odontologia Clínico- Científica (Online) 2011; 10(3):243-246.

  • Cerqueira MD, Souza-Neta LC, Passos MGVM, Lima EO, Roque NF, Martins D et al. Seasonal variation and antimicrobial activity of Myrcia myrtifolia essential oils. Journal of the Brazilian Chemical Society 2007; 18(5):998-1003.

  • Chan-Bacab MJ, Peña-Rodríguez LM. Plant natural products with leishmanicidal activity. Natural Product Reports 2001; 18(6):674-688.

  • Chandra H, Bishnoi P, Yadav A, Patni B, Mishra AP, Nautiyal AR. Antimicrobial resistance and the alternative resources with special emphasis on plant-based antimicrobials-A. Plants 2017; 6(2):1-11.

  • CNCFlora - Centro Nacional de Conservação da Flora. Myrcia insularis in Lista Vermelha da flora brasileira versão 2012.2 Centro Nacional de Conservação da Flora 2012. Available in <Available in http://cncflora.jbrj.gov.br/portal/pt-br/profile/Myrciainsularis >. Access: 05 jun. 2022.
    » http://cncflora.jbrj.gov.br/portal/pt-br/profile/Myrciainsularis

  • Colombo AL, De Almeida Júnior JN, Slavin MA, Chen SC-A, Sorrell TC. Candida and invasive mould diseases in non-neutropenic critically ill patients and patients with hematological cancer. The Lancet Infectious Diseases 2017; 17(11):e344-e356.

  • Crowell AL, Williams DC, Davis EM, Wildung MR, Croteau R. Molecular cloning and characterization of a new linalool synthase. Archives of Biochemistry and Biophysics 2002; 405(1):112-121.

  • Duraipandiyan V, Ignacimuthu S. Antifungal activity of traditional medicinal plants from Tamil Nadu, India. Asian Pacific Journal of Tropical Biomedicine 2011; 1(2Suppplement):S204-S215.

  • Facundo VA, Rios KA, Medeiros CM, Militão JSLT, Miranda ALP, Epifanio RA et al. Arjunolic acid in the ethanolic extract of Combretum leprosum root and its use as a potential multi-functional phytomedicine and drug for neurodegenerative disorders: anti-inflammatory and anticholinesterasic activities. Journal of the Brazilian Chemical Society 2005; 16(6B):1309-1312.

  • Fehlberg I, Ferraz CG, Santos IBF, Santos IIP, Guedes MLS, Ribeiro PR, Cruz FG. A new C-methyl-flavone and other compounds from Myrcia guianensis. Biochemical Systematics and Ecology 2023; 106:104566.

  • Franco CJP, Ferreira OO, Moraes AAB, Varela ELP, Nascimento LD, Percário S, Oliveira MS, Andrade EHA. Chemical composition and antioxidant activity of essential oils from Eugenia patrisii Vahl, E. punicifolia (Kunth) DC., and Myrcia tomentosa (Aubl.) DC., leaf of family Myrtaceae. Molecules 2021; 26(11):1-12.

  • Gabaldón T, Naranjo-Ortíz MA, Marcet-Houben M. Evolutionary genomics of yeast pathogens in the Saccharomycotina. FEMS Yeast Research 2016; 16(6):1-10.

  • Gevú KV, Lima HRP, Neves IA, Mello EO, Bonan GT, Carvalho LP et al. Chemical composition and anti-Candida and anti-Trypanosoma cruzi activities of essential oils from the rhizomes and leaves of Brazilian species of Renealmia L. fil. Records of Natural Products 2019; 13(3):268-280.

  • Ghosh C, Sarkar P, Issa R, Haldar J. Alternatives to conventional antibiotics in the Era of antimicrobial resistance. Trends in Microbiology 2019; 27(4):323-338.

  • Giordani C, Santin R, Cleff MB. Levantamento de extratos vegetais com ação anti-Candida no período de 2005-2013. Revista Brasileira de Plantas Medicinais 2015; 17(1): 175-185.

  • Halcón L, Milkus K. Staphylococcus aureus and wounds: A review of tea tree oil as a promising antimicrobial. American Journal of Infection Control 2004; 32(7):402-408.

  • Hammer KA, Carson CF, Riley TV. Susceptibility of transient and commensal skin flora to the essential oil of Melaleuca alternifolia (tea tree oil). American Journal of Infection Control 1996; 24(3):186-189.

  • Huang AC, Osbourn A. Plant terpenes that mediate below‐ground interactions: prospects for bioengineering terpenoids for plant protection. Pest Management Science 2019; 75(9):2368-2377.

  • Jeronimo LB, Costa JS, Pinto LC, Montenegro RC, Setzer WN, Mourão RHV, Silva JKR, Maia JGS, Figueiredo PLB. Antioxidant and cytotoxic activities of Myrtaceae essential oil rich in terpenoids from Brazil. Natural Product Communications 2021; 16(2): 1-13.

  • Jorge LIF, Aguiar JPL, Silva MLP. Foliar anatomy of pedra-hume- caa (Myrcia sphaerocarpa, Myrcia guianensis, Eugenia punicifolia, Myrtaceae). Acta Amazônica 2000; 30(1): 49-57.

  • Pereira Júnior RC. Caracterização química e avaliação dos potenciais antimicrobiano, inseticida e citotóxico de óleos essenciais obtidos de Myrcia spp. (Myrtaceae) ocorrentes em ecossistema de terra firme (Amazônia) [tese]. Manaus: Universidade Federal do Amazonas; 2018.

  • Knudsen C, Gallage NJ, Hansen CC, Møller BL, Laursen T. Dynamic metabolic solutions to the sessile life style of plants. Natural Product Reports 2018; 35(11):1140-1155.

  • Laursen T, Møller BL, Bassard JE. Plasticity of specialized metabolism as mediated by dynamic metabolons. Trends in Plant Science 2015; 20(1):20-32.

  • Li Y, Kong D, Fu Y, Sussman MR, Wu H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemistry 2020; 148:80-89.

  • Limberger RP, Sobral M, Henriques AT, Menut C, Bessiere JM. Essential oils from Myrcia species native to Rio Grande do Sul. New Chemical 2004; 27(6): 916-919.

  • Liu WJH. Traditional herbal medicine research methods: identification, analysis, bioassay, and pharmaceutical and clinical studies. 3rd. New Jersey: John Wiley & Sons; 2011.

  • Machado FAPSA, Capelasso M, Oliveira AJB, Zamuner MLM, Mangolin CA, Machado MFPS. Alkaloid production and isozymes expression from cell suspension culture of Cereus peruvianus Mill. (Cactaceae). Journal of Plant Science 2006; 1(4):324-331.

  • Mann A, Ibrahin K, Oyewale AO, Amupitan JO, Fatope MO, Okogun JI. Isolation and elucidation of three triterpenoids and its antimycobacterial activity of Terminalia avicennioides. American Journal of Organic Chemistry 2012; 2(2): 14-20.

  • Masoko P, Mdee LK, Mampuru LJ, Eloff JN. Biological activity of two related triterpenes isolated from leaves of Combretum nelsonii (Combretaceae). Natural Product Research 2008; 22(12):1074-1084.

  • Masoko P, Picard J, Howard RL, Mampuru LJ, Eloff JN. In vivo antifungal effect of Combretum and Terminalia species extracts on skin wound healing in immunosuppressed rats. Pharmaceutical Biology 2010; 48(6):621-632.

  • Moreira TMS. Estudo da composição química, citotoxicidade e alvos da atividade antifúngica de Melaleuca alternifolia Cheel (Myrtaceae) e de Plinia cauliflora (Mart.) Kausel (Myrtaceae) [dissertação]. Araraquara: Faculdade de Ciências Farmacêuticas Universidade Estadual Paulista; 2010.

  • Paduch R, Kandefer-Szerszen M, Trytek M, Fiedurek J. Terpenes: compounds useful in human healthcare. Archivum Immunologiae et Therapiae Experimentalis 2007; 55:315-327.

  • Passos CS, Arbo MD, Rates SMK, Von-Poser GL. Terpenoids with activity in the Central Nervous System (CNS). Brazilian Journal of Pharmacognosy 2009; 19(1A):140-149.

  • Perfect JR. The antifungal pipeline: a reality check. Nature Reviews Drug Discovery 2017; 16(9):603-616.

  • Ribeiro CL, Paula JAM, Peixoto JC. Pharmacological properties of species of the genres: Myrcia, Eugenia and Psidium-Myrtaceae-, typical of the Cerrado: A scope review. Research, Society and Development, 2022; 11(8): e44711830356.

  • Salem MM, Werbovetz KA. Natural products from plants as drugs candidates and lead compounds against Leishmaniasis and Trypanosomiasis. Current Medicinal Chemistry 2006; 13(21): 2571-2598.

  • Santana CB, Souza JGL, Coracini MDA, Walerius AH, Soares VD, Costa WF, Pinto FGS. Chemical composition of essential oil from Myrcia oblongata DC and potencial antimicrobial, antioxidant and acaricidal activity against Dermanyssus gallinae (DEGEER, 1778). Bioscience Journal 2018; 34(4): 996-1009.

  • Santos C, Melo NC, Ruiz ALTG, Floglio MA. Antiproliferative activity from five Myrtaceae essential oils. Research, Society and Development 2023; 12(3): e14612340536.

  • Santos MF, Amorim BS, Burton GP, Fernandes T, Gaem PH, Lourenço ARL et al. Myrcia in flora and Funga of Brazil. Botanical Garden of Rio de Janeiro. 2020. [dataset]. 5 Jun. 2022. http://floradobrasil.jbrj.gov.br/FB10709
    » http://floradobrasil.jbrj.gov.br/FB10709

  • Scorzoni L, Silva ACAP, Marcos CM, Assato PA, Melo WCMA, Oliveira HC et al. Antifungal therapy: new advances in the understanding and treatment of mycosis. Frontiers in Microbiology 2017; 08:1-23.

  • Sharma J, Rosiana S, Razzaq I, Shapiro RS. Linking cellular morphogenesis with antifungal treatment and susceptibility in Candida pathogens. Journal of Fungi 2019; 5(1):1-28.

  • Shekhova E, Kniemeyer O, Brakhage AA. Induction of mitochondrial reactive oxygen species production by itraconazole, terbinafine and amphotericin B as a mode of action against Aspergillusfumigatus. Antimicrobial Agents and Chemotherapy 2017; 61(11):e00978-17.

  • Silva EAJ, Estevam EBB, Silva TS, Nicolella HD, Furtado RA, Alves CCF et al. Antibacterial and antiproliferative activities of the essential oil of fresh leaves of Psidium guajava L. (Myrtaceae) Brazilian Journal of Biology 2019; 79(04):697-702.

  • Silva FS, Landell MF, Paulino GBV, Coutinho HDM, Albuquerque UP. Antifungal activity of selected plant extracts based on an ethnodirected study. Acta Botanica Brasilica 2020; 34(2):442-448.

  • Silva NA, Bomfim HF, Magalhães AO, Rocha ML, Lucchese AM. Chemical composition and antinociceptive activity of essential oil from Myrcia rostrata DC. (Myrtaceae) in animal models. New Chemistry 2018; 41(9):982-988.

  • Silva NA, Uetanabaro ANT, Lucchese AM. Chemical composition and bacterial activity of essential oils from Myrcia alagoensis (Myrtaceae). Natural Product Communications 2013; 8(2): 269-271.

  • Spampinato C, Leonardi DC. Infections, Causes, Targets and Resistance Mechanisms: Traditional and Alternative Antifungal Agents. BioMed Research International 2013; 2013(12):1-13.

  • Stefanello MEA, Cervi AC, Wisniewski Júnior A, Simionatto EL. Essential oil composition of Myrcia laruotteana Camb. Journal of essential oil research 2006; 19: 466-467.

  • Stefanello MEA, Cervi AC, Wisniewski Júnior A, Simionatto EL Composition and seasonal variation of essential oils of Myrcia obtecta (O. Berg) Kiaersk. var. obtecta, Myrtaceae. Brazilian Journal of Pharmacognosy 2010; 20(1):82-86.

  • Theis N, Lerdau M. The evolution of function in plant secondary metabolites. International Journal of Plant Sciences 2003; 164(S3):S93-S102.

  • Torrent M, Pulido D, Rivas L, Andreu D. Antimicrobial Peptide Action on Parasites. Current Drug Targets 2012; 13(9):1138-1147.

  • Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines (Basel) 2018; 5(3):1-16.

  • Veras BO, Santos YQ, Oliveira FGS, Almeida JRGS, Silva AG, Correia MTS et al. Algrizea Minor Sobral, Faria & Proença (Myrteae, Myrtaceae): Chemical composition, antinociceptive, antimicrobial and antioxidant activity of essential oil. Natural Product Research 2019; 34(20):3013-3017.

  • Vieira MGC, Santos FR, Braz Filho R, Vieira IJC. Chemical constituents of Trichilia hirta (Meliaceae). Natural Product Communications 2016; 11(5):593-596.

  • Vieira TR, Barbosa LCA, Maltha CRA, Paula VF, Nascimento EA. Chemical constituents from Melaleuca alternifólia (Myrtaceae). Química Nova 2004; 27(4):536-539.

  • Wang Y, Lu C, Zhao X, Wang D, Liu Y, Sun S. Antifungal activity and potential mechanism of Asiatic acid alone and in combination with fluconazole against Candida albicans. Biomedicine & Pharmacotherapy 2021; 139(4):1-7.

  • Wong KY, Vikram P, Chiruvella KK, Mohammed A. Phytochemical screening and antimicrobial potentials of Borreria sps (Rubiaceae). Journal of King Saud University - Science 2015; 27(4):302-311.

  • Zacchino SA, Butassi E, Libert MD, Raimondi M, Postigo A, Sortino M. Plant phenolic and terpenoids as adjuvants of antibacterial and antifungal drugs. Phytomedicine 2017; 37:27-48.


Submitted date:
08/03/2022

Accepted date:
09/19/2023

6583303aa9539512e3699313 floram Articles

FLORAM

Share this page
Page Sections