Floresta e Ambiente
https://www.floram.org/article/doi/10.1590/2179-8087.065917
Floresta e Ambiente
Original Article Wood Science and Technology

Water Flow Evaluation in Eucalyptus and Corymbia Short Logs

Thiago Monteiro; José Lima; José Silva; Antonio José Zanuncio; Edy Baraúna

Downloads: 0
Views: 1171

Abstract

ABSTRACT: The aim of this study is to evaluate the free and adsorbed water flow in short logs of Eucalyptus urophylla and Corymbia citriodora clones. 40 cm long, short logs were extracted from the base of the trees. Three trees each of C. citriodora and E. urophylla (A and B clones) were used. 27 logs were debarked and dried to achieve stabilization of mass. Free water (FWFR), adsorbed water (AWFR) and total water (TWFR) flow rates, and basic density were calculated. FWFR was greater than TWFR, which was superior to AWFR. The B clone wood showed a higher FWFR value and a lower AWFR value when compared to the other materials. On the other hand, the A clone wood showed a higher TWFR than the other materials. The TWFR was inversely proportional to density.

Keywords

drying, free water, adsorbed water, moisture, basic density

References

Associação Brasileira de Normas Técnicas – ABNT. NBR-7190: Projeto de estruturas de madeira. Rio de Janeiro: ABNT; 1997.

Associação Brasileira de Normas Técnicas – ABNT. NBR-11941: Madeira: determinação da densidade básica . Rio de Janeiro: ABNT; 2003.

Barbosa CG, Lima JT, Rosado SCS, Trugilho PF. Elaboração de programa de secagem para madeiras de clones de híbridos de Eucalyptus spp. Revista Ceres 2005; 11(1): 40-48.

Brand MA, Muñiz GIB, Quirino WF, Brito JO. Storage as a tool to improve wood fuel quality. Biomass and Bioenergy 2011; 35(7): 2581-2588. http://dx.doi.org/10.1016/j.biombioe.2011.02.005.

Engelund ET, Thygesen LG, Svensson S, Hill CAS. A critical discussion of the physics of wood–water interactions. Wood Science and Technology 2013; 47(1): 141-161. http://dx.doi.org/10.1007/s00226-012-0514-7.

Hoang VH, Nagasaki S, Kawabata Y, Wajima T, Nakagome H. Drying mechanism of unutilized cedar logs as a source of heating fuel. International Journal of Chemical Engineering and Applications 2015; 6(4): 285-288. http://dx.doi.org/10.7763/IJCEA.2015.V6.498.

Jankowsky IP, Santos GRV. Drying behavior and permeability of Eucalyptus grandis lumber. Maderas. Ciencia y Tecnología 2005; 7(1): 17-21.

Klitzke RJ, Batista DC. Ensaio de taxa de secagem e escore de defeitos para a predição da qualidade de secagem convencional da madeira de Eucalyptus. Scientia Forestalis 2010; 38(85): 97-105.

Kollmann FP, Côté WA Jr. Principles of wood science and technology . Berlin: Springer-Verlag; 1968. http://dx.doi.org/10.1007/978-3-642-87928-9.

Latorraca JVF, Dias AF Jr, Silva GC, Pace JHC, Carvalho AM. Anelamento e vaporização de toras visando otimização do processo de secagem da madeira de Eucalipto. Agrária 2015; 10(2): 273-279. http://dx.doi.org/10.5039/agraria.v10i2a4601.

Lemos ALF, Garcia RA, Lopes JO, Carvalho AM, Latorraca JVF. Madeira de Corymbia citriodora (Hook.) K.D. Hill & L.A.S. Johnson sob aspectos físicos e anatômicos como fatores qualitativos. Floresta e Ambiente 2012; 19(1): 1-8. http://dx.doi.org/10.4322/floram.2012.001.

Monteiro TC, Lima JT, Hein PRG, Silva JRM, Trugilho, PF, Andrade HB. Efeito dos elementos anatômicos da madeira na secagem das toras de Eucalyptus e Corymbia . Scientia Forestalis 2017; 45(115): 493-505. http://dx.doi.org/10.18671/scifor.v45n115.07.

Pertuzzatti A, Trevisan R, Fioresi T, Rabuske JE, Trautenmüller AV, Motta CI, et al. Influência do diâmetro das toras na secagem ao ar livre de Eucalyptus globulus Labill. Ciência da Madeira 2013; 4(2): 191-201. http://dx.doi.org/10.12953/2177-6830.v04n02a05.

Rémond R, De La Cruz M, Aléon D, Perré P. Investigation of oscillating climates for wood drying using the flying wood test and loaded beams: need for a new mechano-sorptive model. Maderas. Ciencia y Tecnología 2013; 15(3): 269-280.

Rezende RN, Lima JT, Silva JRM, Napoli A, Andrade HB, Faria ALR. Air drying of logs from an Eucalyptusurophylla clone for carbonization use. Revista Ceres 2010; 16(4): 565-572.

Rousset P, Figueiredo C, Souza MD, Quirino W. Pressure effect on the quality of Eucalyptus wood charcoal for the steel industry: a statistical analysis approach. Fuel Processing Technology 2011; 92(3): 1890-1897. http://dx.doi.org/10.1016/j.fuproc.2011.05.005.

Sepulveda-Villarroel V, Perez-Peña N, Salinas-Lira C, Salvo-Sepulveda L, Elustondo D, Ananias RA Development of moisture and strain profiles during pre-drying of Eucalyptus nitens. Drying Technology 2015; 34(4): 428-436. http://dx.doi.org/10.1080/07373937.2015.1060490.

Siau JF. Flow in wood. Syracuse: Syracuse University Press; 1971.

Skaar CJ. Water in wood. Syracuse: Syracuse University Press; 1972.

Swithenbank J, Chen Q, Zhang X, Sharifi V, Pourkashanian M. Wood would burn. Biomass and Bioenergy 2011; 35(3): 999-1007. http://dx.doi.org/10.1016/j.biombioe.2010.12.026.

Vital BR, Della Lucia RM, Valente OF. Estimativa do teordeumidade de lenha para carvão em função do tempo de secagem. Revista Árvore 1985; 9(1): 10-27.

Zanuncio AJV, Monteiro TC, Lima JT, Andrade HB, Carvalho AG. Drying biomass for energy use of Eucalyptus urophylla and Corymbia citriodora logs. BioResources 2013; 8(4): 5159-5168. http://dx.doi.org/10.15376/biores.8.4.5159-5168.

Zanuncio AJV, Carvalho AG, Silva LF, Lima JT, Trugilho PF, Silva JRM. Predicting moisture content from basic density and diameter during air drying of Eucalyptus and Corymbia logs. Maderas. Ciencia y Tecnología 2015; 17(2): 335-344.
 

5b3646e20e88252553eaa587 floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections