25APR

FLORAM receives Impact Factor

We are pleased to announce that FLORAM has received its first impact factor rating in the 2022 Journal Citation Reports (JCR).

Now FLORAM has the highest impact factor among Brazilian Forest Sciences journals.

Floresta e Ambiente
https://www.floram.org/article/doi/10.1590/2179-8087.086717
Floresta e Ambiente
Original Article Wood Science and Technology

Anatomical and Physicochemical Characterization of the Araucaria angustifolia Seed Coat

Danielle Affonso Sampaio; Rosilei Aparecida Garcia; Helena Regina Pinto Lima

Downloads: 0
Views: 982

Abstract

ABSTRACT: Seed coat plays an important role in the embryo protection and seed germination. This study aimed to characterize the anatomical structure, histochemical and physicochemical aspects of the seed coat of Araucaria angustifolia Kuntze. Light and scanning microscopy usual procedures, and histochemical tests were used to describe and characterize seed layers, as well as to determine their extractive contents. Functional groups of the integument coat layers were observed by Fourier transformed infrared spectroscopy. Color analyses were performed in CIE 1976 L*a*b* color space. Wettability of the layers was evaluated by contact angle analysis. The anatomical and chemical features observed in the seed layers include the rucose cuticle and the presence of many layers of sclerenchyma in the mesotesta; and the chromaticity due to extractive content and phenolic compounds in the endotesta. The wettability varied among layers according to their structure. These features information contribute to a better understanding on the services provided by the Araucaria angustifolia seed coat.

Keywords

pinhão, colorimetry, conifers, contact angle analysis, FT-IR spectroscopy

References

Abreu HS, Carvalho AM, Monteiro MBO, Pereira RPW, Silva HR, Souza KCA et al. Métodos de análise em química da madeira. Floresta e Ambiente 2006; 1-20.

Amusant N, Beauchene J, Fournier M, Janin G, Thevenon M. Decay resistance in Dicorynia guianensis Amsh: analysis of inter-tree and intra-tree variability and relations with wood colour. Annals of Forest Science 2004; 61(4): 373-380. http://dx.doi.org/10.1051/forest:2004030.

Associação de Preservação do Meio Ambiente e da Vida – APREMAVI. Floresta com Araucárias [online]. Atalanta: APREMAVI; 2017 [cited 2017 Aug 16]. Available from: http://www.apremavi.org.br/floresta-com-araucarias/

Borges EEL, Silva RF, Borges RCG. Estudo da germinação de sementes de pinheiro brasileiro. In: Resumo do Congresso Brasileiro de Sementes, 1987; Brasília. Brasília: ABRATES; 1987. p. 134.

Bormashenko E, Grynyov R, Bormashenko Y, Drovi E. Cold radiofrequency plasma treatment modifies wettability and germination rate of plant seeds. In: Mittal KL, editors. Advances in contact angle, wettability and adhesion. Massachusetts: Wiley Online Library; 2013. http://dx.doi.org/10.1002/9781118795620.ch14.

Branco CS, Rodrigues TS, Lima ED, Calloni C, Scola G, Salvador, M. Chemical constituints and biological activies of Araucaria angustifolia (Bertol.) O. Ktze: a review. Journal of Organic & Inorganic Chemistry 2016; 2(1): 1-10. http://dx.doi.org/10.21767/2472-1123.100008.

Caçola AV, Amarante CVD, Fleig FD, Mota CS. Qualidade fisiológica de Araucaria angustifolia (Bertol.) Kuntze submetidas a diferentes condições de armazenamento e escarificação. Ciência Florestal 2006; 16(4): 391-398. http://dx.doi.org/10.5902/198050981920.

Cordoba LP, Ribeiro LS, Rosa LS, Lacerda LG, Schnitzler E. Effect of enzymatic treatments on thermal, rheological and structuralproperties of pinhão starch. Thermochimica Acta 2016; 642: 45-51. http://dx.doi.org/10.1016/j.tca.2016.08.020.

Costa FJOG, Leivas CL, Waszczynskyj N, Godoi RCB, Helm CV, Colman TAD et al. Characterisation of native starches of seeds of Araucaria angustifolia from four germplasm collections. Thermochimica Acta 2013; 565: 172-177. http://dx.doi.org/10.1016/j.tca.2013.04.030.

Doni L Fo, Amaral L, Cervi PH. Métodos para testar o poder germinativo das sementes de Araucaria angustifolia (Bert.) O. Ktze. Revista Brasileira de Sementes 1985; 7(2): 113-123. http://dx.doi.org/10.17801/0101-3122/rbs.v7n2p113-123.

International Organization for Standardization – ISO. ISO 11664-4:2008 (CIE S 014-4/E:2007) - Colorimetry -- Part 4: CIE 1976 L*a*b* Colour space [online]. Geneva: ISO; 2008 [cited 2017 Aug 16]. Available from: https://www.iso.org/obp/ui/#iso:std:iso:11664:-4:ed-1:v1:en

Koen J, Slabbert MM, Bester C, Bierman F. Germination characteristics of dimorphic honeybush (Cyclopia spp.) seed. South African Journal of Botany 2017; 110: 68-74. http://dx.doi.org/10.1016/j.sajb.2016.03.006.

Kraus JE, Arduin M. Manual básico de métodos em morfologia vegetal. Seropédica: Editora Universidade Rural; 1997.

Kubo S, Kadla JF. Hydrogen bonding in lignin: a fourier transform infrared model compound study. Biomacromolecules 2005; 6(5): 2815-2821. http://dx.doi.org/10.1021/bm050288q. PMid:16153123.

Lin SY, Dence CW. Methods in lignin chemistry. Berlín: Spring-Verlag; 1992. http://dx.doi.org/10.1007/978-3-642-74065-7.

Muhl QE, du Toit ES, Steyn JM, Robbertse PJ. The embryo, endosperm and seed coat structure of developing Moringa oleifera seed. South African Journal of Botany 2016; 106: 60-66. http://dx.doi.org/10.1016/j.sajb.2016.05.009.

Núcleo de Estudos e pesquisas em Alimentação – NEPA. Tabela Brasileira de Composição de Alimentos. Campinas: UNICAMP; 2011.

Pâques LE, García-Casas MDC, Charpentier JP. Distribution of heartwood extractives in hybrid larches and in their related European and Japanese larch parentes: relationship with wood colour parameters. European Journal of Forest Research 2012; 131(5): 1269-1278.

Peralta RM, Koehnlein EA, Oliveira RF, Correa VG, Corrêa RCG, Bertonha L et al. Biological activities and chemical constituents of Araucaria angustifolia: an effort to recover a species threatened by extinction. Trends in Food Science & Technology 2016; 54: 85-93. http://dx.doi.org/10.1016/j.tifs.2016.05.013.

Sampaio DA, Abreu HS, Augusto LDS, Silva B, Ibanez CM. Perfil lignoídico del tegumento de semillas de Araucaria angustifolia. Bosque (Valdivia) 2016; 37(3): 549-555. http://dx.doi.org/10.4067/S0717-92002016000300012.

Sills DL, Gossett JM. Assessment of commercial hemicellulases for saccharification of alkaline pretreated perennial biomass. Bioresource Technology 2011; 102(2): 1389-1398. http://dx.doi.org/10.1016/j.biortech.2010.09.035. PMid:20933396.

Silva CV, Martins G, Steiner N, Santos KL, Camargo RS, Mantovani A et al. Araucaria angustifolia Pinheiro-Brasileiro. In: Coradin L, Siminski A, Reis A, editores. Espécies Nativas da Flora Brasileira de Valor Econômico Atual ou Potencial Plantas para o Futuro - Região Sul. Brasília: Ministério do Meio Ambiente; 2011.

Silva SM, Koehnlein EA, Bracht A, Castoldi R, Morais GR, Baesso ML et al. Inhibition of salivary and pancreatic α-amylases by a pinhão coat (Araucaria angustifolia) extract rich in condensed tannin. Food Research International 2014; 56: 1-8. http://dx.doi.org/10.1016/j.foodres.2013.12.004.

Smýkal P, Vernoud V, Blair MW, Soukup A, Thompson RD. The role of the testa during development and in establishment of dormancy of the legume seed. Frontiers in Plant Science 2014; 5(351): 1-19. http://dx.doi.org/10.3389/fpls.2014.00351. PMID: 25101104.

Stockey RA. Seeds and embryos of Araucaria mirabilis. American Journal of Botany 1975; 62(8): 856-868. http://dx.doi.org/10.1002/j.1537-2197.1975.tb14126.x.

Van Dongen JT, Ammerlaan AM, Wouterlood M, Van Aelst AC, Borstlap AC. Structure of the developing pea seed coat and the post-pholem transport pathway of nutrients. Annals of Botany 2003; 91(6): 729-737. https://doi.org/10.1093/aob/mcg066.

Wagner A, Tobimatsu Y, Phillips L, Flint H, Geddes B, Lu F et al. Syringyl lignin production in conifers: proof of concept in a Pine tracheary element system. Proceedings of the National Academy of Sciences of the United States of America 2015; 112(19): 6218-6223. http://dx.doi.org/10.1073/pnas.1411926112. PMid:25902506.

Xu F, Yu J, Tesso T, Dowell F, Wang D. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Applied Energy 2013; 104: 801-809. http://dx.doi.org/10.1016/j.apenergy.2012.12.019.
 

5ce3ee720e8825a1695bc09a floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections