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Abstract
The practice of shifting cultivation has led to forest degradation and deforestation in the Sisimeni Sanam Forest 
Area, with Special Purpose (SSFAwSP). Therefore, this study aims to assess land cover and carbon storage changes 
of the practiced shifting cultivation in SSFAwSP over the last ten years using 2013, 2016, and 2021 Landsat imagery. 
A hybrid classification approach that combines the forest canopy density model and supervised classification of 
maximum likelihood was used to create land cover maps to detect changes in forest land cover and carbon storage. 
The results showed that for ten years, the extent and annual rates of deforestation, forest degradation, forest regrowth, 
and changes in carbon storage were 662.62 ha (4%), 319.18 ha (3%), 163.8 ha (1%), and -54.51 kilo Ton C (3%), 
respectively. This finding indicated that shifting cultivation contributed only 10% and 1% of total deforestation and 
forest degradation, respectively.

Keywords: Forest canopy density, Deforestation, Forest degradation, Forest regrowth, Semi-arid ecosystem.

1. INTRODUCTION AND OBJECTIVES

Land use and land cover change (LULCC) have become 
the major causes of deforestation, habitat degradation, 
and climate change worldwide (Eddy & Gergel, 2015; 
Van Vliet et al., 2012). One of the causes of LULCC is 
shifting cultivation, related to large-scale deforestation 
and forest degradation at the tropical forest-agriculture 
border (Mukul & Herbohn, 2016). In India and Sri Lanka, 
shifting cultivation has been practiced since prehistoric 
times (Kingwell-Banham & Fuller, 2012) and has played an 
important role in shaping long-term ecological, political, 
and social history. It has also affected Bhutanese forests but 
has been recovered due to the combination of agricultural 
intensification and imports (Bruggeman et al., 2016). 
Therefore, tropical forests need to be prioritized as the 
most important sector for climate change mitigation efforts 
to prevent expansion and short-term shifting cultivation 
(Villa et al., 2021).

In 2012, shifting cultivation is expected to increase by 
approximately 28% in Southeast Asia (Van Vliet et al., 2012). 
Meanwhile, Laos’s real-world example demonstrates a shift in 
land cover from rubber and sugar cane to cash crops despite 
the state policy (Vongvisouk et al., 2014). The increase in 
global demand for certain agricultural products, such as 
coffee and other seasonal crops, also caused deforestation 
in Vietnam, expanding the products to new shifting 
cultivation locations (Meyfroidt et al., 2013). In Indonesia, 
the dynamics of forest conversion to agriculture are also 
driven by shifting cultivation that largely uses fire (Nguyen 
et al., 2022). Therefore, shifting cultivation remains a major 
source of deforestation and forest degradation in this region.

Indonesia is one of the Southeast Asian countries with 
a long history of shifting cultivation, which has also been 
practiced in Borneo for over 200 years (Lawrence & Schlesinger, 
2001). Similarly, shifting cultivation has been investigated in 
Sumatra, such as in Kerinci Seblat National Park (Hariyadi & 
Ticktin, 2012) and Lampung (Syam et al., 1997), but different 
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in Borneo. Therefore, most of the studies of shifting cultivation 
are concentrated in Kalimantan and Sumatra, with a focus 
on land use change (Nugroho et al., 2018), socio cultural 
(Nugroho et al., 2020), policy and governance (Thaler & 
Anandi, 2017), as well as biodiversity (Takeuchi et al., 2019).

Shifting cultivation is still practiced by traditional forest 
users in Indonesia’s semi-arid areas, including East Nusa 
Tenggara Province, where Kapa et al. (2017) investigated 
the system based on local wisdom in West Timor. Dako et 
al. (2019 reported that shifting cultivation and fires are the 
two causes of damage to the Mutis Timau Protected Forest 
area. Bustan et al. (2020) discovered that the slash-and-burn 
practice had become a family tradition across different 
generations in Manggarai Regency, Flores Island. Sudiyono 
(2015) carried out a similar study on Alor Island; however, 
several reports on shifting cultivation in East Nusa Tenggara 
Province’s semi-arid areas have primarily focused on cultural 
themes. Therefore, this study aims to assess the practice of 
shifting cultivation on land cover and carbon storage changes 
in the Sisimeni Sanam Forest Area with Special Purpose 
(SSFAwSP) on Timor Island. 

2. MATERIALS AND METHODS

2.1. Study area 

SSFAwSP is geographically located between 09°56'54" - 
10°02'22" S and 123°58'20" - 124°01'10" E (Figure 1). The area 
is 2,973.2 ha, including five rural areas: Ekateta, Camplong 
II, Sillu, Benu, and Takari Village. The elevation varies from 
225 to 525 m above sea level, with mostly 0 - 25% slope levels. 
In this area, the climatic conditions belong to category E 
according to Schmidt and Fergusson, with rainfall ranging 
from 0 - 535 mm/year. The temperature ranges between 
24° and 34°C, with a relative humidity of around 75-76%. 
Meanwhile, the soil types are dominated by Kambisol (39%), 
followed by Rendzina (35%), and Latosol (26%). Most of the 
land cover consists of shrubs, dryland forests, and savanna, 
approximately 51, 29, and 15%, respectively (EFETI Kupang, 
2020). Shifting cultivation is practiced in SSFAwSP and is 
distinguished by the presence of wooden fences on each farm 
to prevent livestock from entering and eating agricultural 
crops in the fields.

Figure 1. The Sisimeni Sanam Forest Area with Special Purpose is situated in the heart of Timor Island and depicted on a digital elevation model.
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photos for 2013, 2015, 2018, 2019, 2020, and 2021 together 
with Google Earth images for 2021 (Table 1). 

All satellite images are the L1T processed by the USGS, 
which are referred to and geometric-corrected to the 
World Geodetic System (WGS84) datum automatically 
(Storey, 2014). The images are projected using the Universal 
Transverse Mercator framework (zone UTM 51 South) in 
GeoTiff format. Subsequently, the geometric and radiometric 
corrections are made using open-source software Quantum 
GIS (QGIS) to reduce atmospheric effects that interfere with 
data processing (Young et al., 2017). The coverage of the six 
group’s satellite imagery was limited according to the vector 
boundaries of SSFAwSP.

2.2. Procedures

2.2.1. Data collections and image pre-processing

This study used multi-temporal Landsat 8 (OLI) satellite 
imageries for 2021, 2016, and 2013, downloaded from the 
United States Geological Survey (USGS). Each image is 
selected considering the base overcast cover, high deceivability 
of the scene, highest satellite picture quality, and accessibility 
(Emran et al., 2016). Other data used were vector boundary 
of SSFAwSP, socio-economic survey data for 2013, 2015, 
and 2019, boundary survey data for 2018, 2020, and 2021, 
as well as ground truth data in the form of GPS, geotagged 

Table 1. Sources and acquisition date of each data used.

Data Acquisition Date Source
Landsat 8, Path/Row 111/67, spatial resolution 30 m 2021/04/28 USGS1

Landsat 8, Path/Row 111/67, spatial resolution 30 m 2016/08/20 USGS1

Landsat 8, Path/Row 111/67, spatial resolution 30 m 2013/08/28 USGS1

Google Earth Image 2021 Google Earth
Socio-Economic Survey Data 2013;2015;2019 EFETI Kupang2

Boundary Survey Data 2018;2020;2021 EFETI Kupang2

Geotag Photo 2013;2015;2018;2019;2020;2021 EFETI Kupang2

Vector Boundary of the Sisimeni Sanam Forest Area with Special Purpose 2021 EFETI Kupang2

1USGS= United State Geological Survey, 2EFETI Kupang= Environmental and Forestry Education and Training Institute of Kupang

2.2.2. Land cover classification

Land cover classification was defined by combining the 
Standard Nasional Indonesia No. 7645-2010; Agriculture, 
Forestry and Other Land Use of 2006 of Intergovernmental 
Panel on Climate Change (IPCC); Agus et al. (2014); and 
Pujiono et al. (2019). The semi-arid land cover class was divided 
into five classes: highly dense forest, moderately dense forest, 

shrubs, savanna, and barren land (Table 2). Three land use 
change types were considered: deforestation, degradation, and 
the spread of shifting cultivation. Meanwhile, deforestation 
is the change in land cover from forest to non-forest, while 
degradation is assumed to be a change in land cover from 
highly to moderately dense forest, and shifting cultivation 
development is carried out to improve the location across 
five land cover classes.

Table 2. Description of semi-arid land cover classification class.

Land Cover Class Description
Carbon storage 

a ton of Carbon ha-1

(Tosiani, 2015)
Forest Area
Highly Dense Forest Natural forest with mineral soil that has been logged, either selective cutting or clear-

cutting, marked with logging path (Secondary Forest)
98.84

Moderately Dense 
Forest

Also known as industrial plantation forest, namely land planted with industrial forest 
plants such as Acacia, Eucalyptus, etc.

98.38

Non-Forest Area
Shrubs Degraded log over areas on non-wet habitat that are an ongoing process of succession 

but not yet reach stable forest ecosystem, having natural scattered trees or shrubs. 
Land overgrown with high shrubs canopies up to 5 m.

30.00

Savanna/Grass Land Areas with grasses and scattered natural trees, reeds, and spikes. 4.00
Barren Land Bare grounds and areas with no vegetation cover yet, including open exposure areas, 

craters, sandbanks, sediments, and areas post-fire that has not yet exhibited regrowth.
2.50

Source: modified from land classification system developed by the National Standardization Agency; Intergovermental Panel on Climate Change, Guidelines for 
National Greenhouse Gas Inventories for Agriculture, Forestry and Other Land Use;  Agus et al. (2014); Pujiono et al. (2019).
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A forest canopy density (FCD) method was used to 
analyze tree canopy density in forested land to simplify the 
land cover classification process (Rikimaru et al., 2002). 
Free GIS software (QGIS) was used to compute four indices: 
advanced vegetation, bare soil, shadow, and thermal Index 
(Table 3). The FCD method that communicated in rate for 
every pixel was determined and created the FCD map in 
2013, 2016, and 2021. All lists and FCD were determined 
under FCD Mapper Ver.2 programming guidelines.

In the non-forest areas, we used a combination of socio-
economic survey data, Google earth images, geotagged photos, 
and boundary survey data to determine the distribution of 
shifting cultivation accurately. A combination of several 
Landsat 8 bands was also used to detect non-forest land 
classification forms accurately, including a combination 

of bands 7 (SWIR-2), 6 (SWIR-1), and 4 (Red) to detect 
settlements; band combination 6 (SWIR-1), 5 (NIR), and 2 
(Blue) to detect agricultural land; and a combination of bands 
5 (NIR), 6 (SWIR-1), and 4 (Red) to distinguish between soil 
and water bodies (Acharya & Yang, 2015).

The training data from the previous land cover 
classification analysis were compiled using the FCD method 
and available data from the field. A supervised maximum 
likelihood classification (MLC) algorithm was carried out 
to classify images for 2021, 2016, and 2013. Furthermore, 
post-classification smoothing using a 3 x 3 m – pixel majority 
filter reduces the salt and pepper effect due to spectral effects 
variability. The image classification was converted to vector 
format to easily measure the area and carbon stock of   each 
type of land cover classification.

Table 3. Formulae and algorithms used to calculate indices in Forest Canopy Density mapper.

Index Formula or Algorithm for Landsat 8 (OLI)
VI

NDVI = (NIR – Red)/(NIR + Red)
AVI = [NIR × (65536-Red) × (NIR – Red) + 1]1/3 , (NIR – Red)>0

ANVI = This index is derived from NDVI and AVI by PCA
BI = [(SWIR1 + Red) – (Blue + NIR) / (SWIR1 + Red) + (Blue + NIR)] × 25600 + 25600
SI = [(65536 – Blue) × (65536 – Green) × (65536 – Red)]1/3

TI = This index is calibrated from the thermal data band or atmospheric correction
FD = This index is calculated from the first principal component of VI and BI
SSI = This index is calculated from the first principal component of SI and TI

FCD = (VD × SSI + 1)1/2 – 1
Note: Landsat bands: Visible bands= Blue, Green, Red; NI= Near Infrared; SWIR= Shortwave Infrared Indices; VI= Vegetation Index; NDVI= Normalize Difference 
Vegetation Index; AVI= Advance Vegetation Index; ANVI= Advanced Normalize Vegetation Index; BI= Bare Soil Index; TI= Thermal Index; VD= Vegetation Density; 
SSI= Scaled Shadow Index; FCD= Forest Canopy Density 
Maximum raster value of Landsat 8 (OLI) is 65536.
Sources: Modified from Rikimaru et al. (2002); Mon et al. (2012); Pujiono et al. (2019).

2.2.3. Accuracy assessment

The accuracy assessment was carried out by comparing 
each land cover classification result from QGIS classification 
with Google satellite imagery, previous geotagged data, socio-
economic, and boundary surveys. When the reference data 
was inaccurate, the assessment results showed that many 
errors occurred during the land cover classification process 
(Negasa et al., 2020). For this purpose, we randomly selected 
five samples from each land cover class.

Producer’s accuracy is map’s accuracy according to the 
perspective of the mapmaker (the producer), as explained in 
equation [1]. This accuracy showed that natural elements on 
the ground are frequently displayed on the arranged guide 
accurately or the likelihood that a specific land front of space 

is named. It is also the number of reference locales arranged 
precisely isolated by the complete number of reference 
destinations for that class.

User accuracy is the precision according to a user’s 
perspective, as described in the equation [2]. It shows the 
class frequency on the map available on the ground. User 
accuracy supplements the commission error, which indicates 
that user accuracy= 100% commission error. It is computed 
by taking the all-out number of correct classifications for a 
specific class and separating it by the row total.

The overall accuracy equation [3] was used to compute 
precision for the entire image across all classes in the 
characterized image. The aggregate accuracy of the map for 
all the classes can be depicted using overall accuracy, which 
ascertains the extent of pixels accurately ordered. 
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Accuracy

Total numer of pixels
in a classi�cation

producer =
Totalnnumber of pixels of that classi�cation
got fromthe reference data (( . ., )i e row  total

…[1]
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Overall Accuracy
Sum of the diagonal elements

Total number of accuracy
=

sites pixels colum total
…[3]

The Kappa statistics value is a proportion of the arrangement 
between classification and reference data (Wang et al., 2012; 
Mishra et al., 2020). Cohen (1968) classified the Kappa values 
into six groups, namely (1) < 0 addressed poor opportunity of 
accuracy, (2) from 0.10 to 0.20 addressed slight opportunity 
of accuracy, (3) from 0.21 to 0.40 addressed fair (4) from 0.41 
to 0.60 addressed moderate (5) from 0.61 to 0.80 addressed 
substantive, and (6) from 0.81 to 0.99 addressed almost 
perfect opportunity of accuracy. A Kappa accuracy value 
of 50% - 90% is adequate (RSPO, 2017); however, Kappa 
coefficients above 0.6 are used as a threshold for acceptable 
accuracy values. In the field of remote sensing, a Kappa 
coefficient greater than 0.6 shows that the translation result 
is adequately accurate; therefore, no reevaluation is required.

2.2.4. Changes detection and carbon storage analysis

The method of Garai & Narayana (2018) was used to 
calculate the percentage of LULCC (equation 4) with the 
formula below:

Change Percentage
LULC Area LULC Area

LULC
present previous

previous

=
−( ) x 100% …[4]

In addition to evaluating carbon stocks changes in various 
land cover classifications, the calculation method developed 
by the IPCC was used by combining country/site-specific 

emission factors and IPCC default emission factors. The 
equation [5] for calculating changes in carbon stock in all 
land use categories is as follows:

∆ ∆ ∆ ∆ ∆ ∆ ∆C C C C C C CAFOLU FL CL GL WL SL OL= + + + + + …[5]

Note: ΔC= Carbon stock change; AFOLU= Agriculture, 
Forestry and Other Land Use; FL= Forest Land; CL= Crop 
Land; GL= Grass Land; WL= Wet Land; SL= Settlements; 
OL= Other Land.

3. RESULTS

3.1. Accuracy and land cover map

The overall accuracy and Kappa coefficient were 80% 
and (0.75), 80% and (0.75), and 75% and (0.65) for images 
classified in 2013, 2016, and 2021, respectively (Table 4). 
Furthermore, producer and user accuracy are used to assess the 
accuracy of each forest type category, including the accuracy 
matrix of highly dense forest in 2013 (Table 4), which was 
83.33% and 100%, representing the accuracy of producers 
and users, respectively. Although the reference highly dense 
forest class was accurately identified in 100% of the cases, 
only 83.33% had a true value. Moderately dense forests are 
also frequently confused with shrubs, leading to a producer 
accuracy of only 50% in 2021. 

The map’s spatial distribution of land cover showed that 
forest areas are located at the map’s north end, north center, 
and east edge, while savanna, shrubs, and bare land are at 
the south center and top west (Figure 2). The forest is in this 
section because most of the area has steep topography, river 
flow paths, and springs protected by the local community. In 
contrast to the type of land cover, namely savanna, shrubs, 
and barren land, the locations are typically close to residential 
areas/enclaves.

Table 4. Accuracy Assessment for three Classified Image in 2013, 2016, and 2021.
Land 
Cover 
Class

2013 2016 2021

TPC TPP TPU PA
(%)

UA
(%) TPC TPP TPU PA

(%)
UA
(%) TPC TPP TPU PA

(%)
UA
(%)

Bl 5 6 5 83.33 100.00 4 5 5 80.00 80.00 4 4 5 100.00 80.00
Sav 3 5 5 60.00 60.00 4 7 5 57.14 80.00 4 5 5 80.00 80.00
Shr 3 3 5 100.00 60.00 3 4 5 75.00 60.00 3 6 5 50.00 60.00
MDF 4 5 5 80.00 80.00 4 4 5 100.00 80.00 3 6 5 50.00 60.00
HDF 5 6 5 83.33 100.00 5 5 5 100.00 100.00 4 4 5 100.00 80.00
OA 80.00 80.00 75.00
OKS 0.75 0.75 0.65

Note: Bl= Barren Land; Hdf= Highly Dense Forest; Mdf= Moderately Dense Forest; Sav= Savanna; Shr= Shrub; TPC= Total pixels in a class; TPP= Total pixels for 
Producers Accuracy; TPU= Total pixel for User Accuracy; PA= Producers Accuracy; UA=User Accuracy; OA= Overall Accuracy; OKS= Overall Kappa Statistics.
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Figure 2. Land use and land cover map of 2013, 2016, 2021 in the Sisimeni Sanam Forest Area with Special Purpose.

3.2. Land cover and carbon storage changes

Most land cover types did not change from 2013 to 
2016, despite appearing denser. In 2016, the land cover 
appeared denser due to a change of approximately 18% from 
moderately dense forest to the highly dense forest, including 
a 13% increase from savanna to shrub and 25% from shrub 
to moderately dense forest. However, there was a 24% change 
from highly dense forest to moderately dense forest and a 
16% from shrub to savanna (Table 5a).

Several changes occurred between 2016 to 2021 from dense 
to less dense, with a minimum of two types of land cover change, 

including the moderately dense forest, which lost approximately 
53% of its territory to shrubs and 35% to savanna, while only 
8% changed to highly dense forest. Similarly, shrub also lost 
approximately 67%, dominated by savanna (53%) and moderately 
dense forest (9%). Other factors contributing to the decrease 
in land cover density included a transition from highly dense 
forest to the moderately dense forest of approximately 42% and 
savanna to the barren land with 20%, where 9% became shrub. 
Furthermore, only 13% of the barren land is overgrown with 
savanna and shrubs (Table 5b). As a result of this condition, the 
barren land and savanna area has increased sixfold and twofold, 
respectively, by 2021 (Table 5c).

Table 5. ‘From to’ detection change analysis for three times intervals: (a) 2013 – 2016; (b) 2016 – 2021; and (c) 2013 – 2021 in the Sisimeni 
Sanam Forest Area with Special Purpose.
a) 2013 – 2016

2013
Land Cover Classes

2016 – Land Cover Classes (ha)
Total 2013

Bl Hdf Mdf Sav Shr
Bl 16.93 0 0 2.05 0.02 19.01
Hdf 0 591.47 186.65 1.55 13.40 793.06
Mdf 0.25 229.82 829.59 47.22 182.05 1,288.94
Sav 23.44 0.14 6.08 316.90 51.76 398.32
Shr 0.58 2.01 164.16 101.55 382.36 650.66
Total 2016 41.20 823.45 1,186.47 469.27 629.59 3,149.98

b) 2016 – 2021 
2016

Land Cover Classes
2021 – Land Cover Classes (ha)

Total 2016
Bl Hdf Mdf Sav Shr

Bl 35.90 0 0 5.00 0.32 41.21
Hdf 0 430.52 341.58 4.52 46.09 822.72
Mdf 1.69 91.05 558.03 122.90 412.75 1,186.42
Sav 92.88 0.38 5.13 328.18 42.66 469.23
Shr 7.34 4.01 55.31 331.05 231.75 629.45
Total 2021 137.81 525.95 960.06 791.64 733.56 3,149.03
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Table 5. Continuation
c) 2013 – 2021 

2013
Land Cover Classes

2021 – Land Cover Classes (ha)
Total 2013

Bl Hdf Mdf Sav Shr
Bl 17.40 0 0 1.57 0.06 19.03
Hdf 1.09 388.77 319.18 20.86 62.02 791.93
Mdf 5.09 133.28 571.10 171.48 408.07 1,289.01
Sav 104.86 0.15 4.95 255.76 32.28 398.00
Shr 9.44 3.44 64.46 341.95 231.14 650.43
Total 2021 137.88 525.64 959.68 791.63 733.58 3,148.41

Note: Bl= Barren Land; Hdf= Highly Dense Forest; Mdf= Moderately Dense Forest; Sav= Savanna; Shr= Shrub

Since the value of carbon stocks is directly affected by changes 
in land cover, it decreases significantly between 2016 and 2021, 
with a value of 36% and 19% in highly and moderately dense 
forests, in 2021, respectively. The barren land has the highest 
increase in carbon stock percentage in 2021 (234%); however, 
the increase is insignificant since the value of carbon stock per 

ha is excessively small (2.5 tons/ha) (Figure 3). When compared 
to changes in carbon stocks from 2013 to 2016, there were no 
significant differences in general, although there was an increase 
in carbon storage in a highly dense forest of around 4% and a 
decrease in the carbon stock of around 8% and 3% in moderately 
dense forest and shrub, respectively (Figure 3).

Figure 3. Stacked histogram of carbon storages and their changes for 2013 – 2016, 2016 – 2021, 2013 – 2021 in the Sisimeni Sanam Forest 
Area with Special Purpose. 

3.3. Linking deforestation and forest degradation 
to shifting cultivation development

Deforestation and forest degradation were discovered 
to be increasing within 2013 - 2021. In SSFAwSP, total 
deforestation and forest degradations were 12% and 14% 
of the forest area, respectively, from 2013 to 2016. Shifting 
cultivation contributed with about 17% to total deforestation 
and 3% to forest degradation. The incidence of deforestation 
and forest degradation increased from 2016 to 2021, with the 

total value increasing to 29%, while shifting cultivation was 
responsible for only 7% of deforestation and 0.9% of forest 
degradation (Table 6). When all deforestation and forest 
degradation incidents from 2013 to 2021 are considered, total 
deforestation was 32%, and forest degradation was 24% of 
the total forest area. Shifting cultivation was also responsible 
for only 10% of deforestation and 1% of forest degradation, 
showing that shifting cultivation was responsible for not 
more than 10% of total deforestation and forest degradation 
in SSFAwSP (Table 6).



Floresta e Ambiente 2022; 29(4): e20220016

8 - 12 Kusuma AF, Sadono R, Wardhana W

8

Table 6. Deforestation and forest degradation due to shifting cultivation by the land cover for three times intervals: (a) 2013 – 2016,  
(b) 2016 – 2021, and (c) 2013 – 2021 in the Sisimeni Sanam Forest Area with Special Purpose.
2013 – 2016

Shifting Cultivation 
Location

Forest Degradation 
Caused by Shifting 

Cultivation (ha)

Total Forest 
Degradation
2013 – 2016 

(ha)

Deforestation 
Caused by Shifting Cultivation (ha)

Total 
Deforestation 

2013 – 2016 (ha)MDF BL Sav Shr
HDF 6.51 186.65 0 0.55 1.34 14.94
MDF 0 0 0.01 9.97 30.25 229.53
Total 6.51 186.65 0.01 10.52 31.60 244.47

2016 – 2021

Shifting Cultivation 
Location

Forest Degradation 
Caused by Shifting 

Cultivation (ha)

Total Forest 
Degradation

2016 – 2021 (ha)

Deforestation
 Caused by Shifting Cultivation (ha)

Total 
Deforestation 

2016 – 2021 (ha)MDF BL Sav Shr
HDF 2.98 341.58 0 0.06 0.49 50.61
MDF 0 0 0.12 16.49 23.01 537.34
Total 2.98 341.58 0.12 16.56 23.49 587.95

2013 – 2021

Shifting Cultivation 
Location

Forest Degradation 
Caused by Shifting 

Cultivation (ha)

Total Forest 
Degradation

2013 – 2021 (ha)

Deforestation 
Caused by Shifting Cultivation (ha)

Total 
Deforestation 

2013 – 2021 (ha)
MDF BL Sav Shr

HDF 4.13 319.18 0.02 2.45 3.03 83.98
MDF 0 0 1.63 31.91 28.50 584.64
Total 4.13 319.18 1.64 34.36 31.53 668.62

Nore: Bl= Barren Land; Hdf= Highly Dense Forest; Mdf= Moderately Dense Forest; Sav= Savanna; Shr= Shrub

2013-2016 2013-2016 2013-2016

Legend

Deforestation Forest Degradation

Figure 4. Deforestation and forest degradation map of 2013 - 2016, 2016 - 2021, 2013 - 2021 in the Sisimeni Sanam Forest Area with Special Purpose.

The deforested and degraded forest areas that have 
regenerated were assessed by comparing the total value of 
deforestation and forest degradation in 2013 – 2021 with 
2013 – 2016 and 2016 – 2021 (Figure 4). Between 2013 and 
2021, the deforested and degraded forest areas returned to the 
highly dense forest by 9% and 19%, respectively. The forest area 
that was deforested and degraded due to shifting cultivation 
grew to the highly dense forest by 14% and 2.9%, respectively. 
Although these areas can regenerate, deforestation and forest 
degradation need to be avoided because the regrowth rates of 

deforested and degraded forest areas are only about 1% and 
2.5% per year, respectively. The regrowth of the deforested 
area in the former shifting cultivation site was much greater 
than the same activity in the degraded area. This regrowth 
condition appears to be the result of several factors such as 
shifting cultivation, which does not open up intensive land 
and leaves a few trees, farmers planting trees between crops, 
the selecting of animal feed crops (Leucaena leucocephala) as 
staple crops on their land, and minimizing excessive damage 
to the forest area around, which can cause forest degradation.
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4. DISCUSSION

4.1. Accuracy assessment

In comparison to other methods, such as MLC and 
multiple linear regression, FCD Mapper has the highest overall 
accuracy and Kappa coefficient for monitoring tropical mixed 
deciduous vegetation in Myanmar (Mon et al., 2012). Using 
MLC, Meyfroidt et al. (2013) reported relatively low overall 
accuracy land cover maps in the coffee-growing areas of Dak 
Lak and Dak Nong provinces, Vietnam, between 2000 and 
2010. Therefore, FCD method was used to assess the forest 
cover changes (Pujiono et al., 2019) and to investigate the 
land cover changes and carbon storage (Sadono et al., 2022).

Savanna was the class with the lowest accuracy values in 
the non-forest category, with approximately 60% and 57.14% 
in 2013 and 2016, respectively. However, a little difficulty was 
encountered in this study by distinguishing sporadic shrubs 
and savanna and dense shrubs and moderately dense forest, 
which occurred due to seasonal conditions in semi-arid 
ecosystems. The Landsat 8 data were collected during the dry 
season to show the current state of the semi-arid ecosystem, 
leading to difficulty of distinguishing between savanna and 
sporadic shrubs and dense shrubs and moderately dense 
forests. This result is in line with the previous study by 
Bruggeman et al. (2016), Gemitzi et al. (2021), Meyfroidt 
et al. (2013), and Pujiono et al. (2019), which discovered 
a difficulty in differentiating between very sparse shrubs 
and savannas. Therefore, shrubs in semi-arid ecosystems 
are commonly identified as savanna or agricultural land 
(Pujiono et al., 2019).

4.2. Changes of land cover and carbon storage

The results indicated a trend toward converting heavily 
forested areas into open spaces between 2013 and 2021. 
According to the forest transition theory, SSFAwSP is entering 
a phase of highly deforestation (Mattsson, 2012), where the 
forest area continues to decline, starting with a reduction 
in forest area dominance from 65% in 2013 to 46% in 2021. 
Although reforestation is occurring in several locations, the 
rate of deforestation is higher, which makes forest gains to 
be ineffective. This finding is different from previous study 
by Mishra et al. (2020), which discovered an increase in 
the forest areas that had entered a low forest cover but is 
increasing through reforestation phase.

Barren land and savanna experienced significant increases 
in non-forest areas, with 724% and 198%, respectively, from 
2013 to 2021. This phenomenon is in line with a previous 
study, which discovered a significant increase in barren land 

(Ogato et al., 2021), agriculture, grassland, and settlements 
(Negassa et al., 2020), and a continuous decrease in the 
forest area. Furthermore, an increase in shrubs, which was as 
significant as in barren land and savanna, of approximately 
113% between 2013 and 2021. This vast expanse of barren 
land is exacerbated further by the use of fire in land clearing 
(Nguyen et al., 2022). During land clearing, moderately dense 
forests and shrubs are typically cleared and burned, though 
some trees are left for shade. On the other hand, the increase 
in shrubs was also discovered in the study by Nugroho et al. 
(2018), which stated that the increase in shrubs was one of 
the forest recovery processes from abandoned agriculture 
areas. This increase is expected to reduce land vulnerability 
to soil erosion and flooding (Ogato et al., 2021).

Changes in land cover have an immediate impact on carbon 
storage. Because the value carbon content of existing forest 
land per hectare is quite high, accounting for approximately 
90% of total carbon, the loss of forest land cover results in 
a significant decrease in carbon stock. A previous study 
showed that forests are the main carbon pool (Gemitzi et al., 
2021), with approximately 92% of the total area (Avitabile 
et al., 2016). The massive reduction in carbon stock (-55%) 
between 2016 and 2021 was due to the conversion of forest 
areas to shrubs, even when they can still mitigate the effects 
of environmental disasters (Ogato et al., 2021).

4.3. Management implication to shifting 
cultivation development

Between 2013 and 2021, total deforestation was 32%, or 
about 4% per year, nearly four times greater than the FAO’s 
deforestation data for Indonesia (Kuntz & Siegert, 1999). 
Total deforestation is also partially offset by 1% of annual 
forest regrowth from 2013 to 2021; therefore, due to the 
large disparity, forested areas are being converted into open 
areas for expansion, in contrast to a previous study which 
discovered that the difference between deforestation and forest 
regrowth was only 0.12% (Avitabile et al., 2016) and 0.31% 
(Meyfroidt et al., 2013). According to Meyfroidt et al. (2013), 
the rate of forest degradation is lower than deforestation, 
approximately 24% between 2013 and 2021, or 3% per year. 
The growth of shrubs into the moderately dense forest at about 
1.2% per year helps balance total forest degradation because 
changes in land cover type from shrub to moderate dense 
forest showed the stages of forest regrowth that originated 
from farmers abandoning their shifting cultivation areas 
(Nugroho et al., 2018).

Shifting cultivation is a tradition practiced by the people 
of East Nusa Tenggara Province, particularly in the western 
part of Timor Island (Dako et al., 2019). Although it only 
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accounts for 10% of total deforestation, farmers continue to 
extend shifting cultivation to another forested land (Dako et 
al., 2019) whether HDF or MDF with a tendency to expand 
the previously abandoned shifting cultivation land. This 
continue expansion of abandoned land is because there are 
no intensive and permanent agricultural activities of current 
cultivation areas, in contrast to the discovery of Bruggeman 
et al. (2016), which stated that agricultural intensification 
causes reforestation of degraded forest areas.

The shifting cultivation pattern in SSFAwSP is similar 
to the pattern in the North Central Timor district (Dako et 
al., 2019). Farmers typically cultivate the land until the third 
year, and when production and soil fertility begin to decline, 
they open land in a new location by performing the same 
activities as on the previous land. Before relocating to the 
new land, farmers planted timbers, such as Acacia mangium, 
Eucalyptus urophylla, and Tectona gradis; multi purpose tree 
species, such as Leucaena leucocephala, Mangifera indica, and 
Citrus sp.; and other annual plants. Meanwhile, farmers will 
return to their first land after 5-8 years of leaving the first 
field (Dako et al., 2019). According to Meyfroidt et al. (2013), 
shifting cultivation is the primary cause of deforestation 
at their study site in Vietnam, in contrast, the traditional 
shifting cultivation in SSFAwSP has a positive side effect by 
replanting timber and plantations before moving to another 
land (Dako et al., 2019). Reduction of opening forested 
land for shifting cultivation combined with technologies of 
intensive farming patterns on marginal lands can be used as 
an abandoned open land rehabilitation strategy. However, 
this strategy needs to be implemented with caution since 
there is still a chance that the abandoned open area will fail 
to regenerate naturally (Fawzi et al., 2019).

5. CONCLUSIONS

SSFAwSP’s land cover has remained forest-dominated from 
2013 to 2021, despite a declining trend in area and carbon 
storage. To anticipate this declining trend, deforestation 
and forest degradation must be monitored and controlled, 
particularly in the occurrence of forest fires and illegal 
logging, since shifting cultivation is responsible for only 10% 
of total deforestation. To improve land cover and increase 
carbon storage, there is a need of an innovative strategy for 
marginal land rehabilitation that combines reduction of land 
expansion for shifting cultivation and technology of intensive 
and permanent agriculture because farmers plant trees when 
they neglect their abandoned shifting cultivation.
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