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Abstract
Human activities in the tropics, particularly large-scale deforestation, significantly contribute to rising greenhouse 
gas emissions. The carbon storage capacity of the Atlantic Forest, specifically in seasonal forests, needs to be better 
understood. Therefore, we analyzed the aboveground carbon stock (AGC) in a semideciduous seasonal forest (SSF) 
remnant in southeastern Minas Gerais through comprehensive vegetation inventory and wood density sampling. The 
20 species that counted for half of the total basal area corresponded to a surprising AGC of 58.05 Mg.ha-1. The AGC 
found is similar to other studies in second-growth SSF, especially the ones with no recent record of human disturbance. 
However, besides the natural process of increasing AGC in forests over the years, long-term decreasing trends in 
other forest ecosystems in Brazil have already been reported. Future long-term studies are crucial to understanding 
how the forest carbon stock will respond to the ongoing environmental and climate change scenario.
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Human activities in the tropical region cause forest 
fragmentation and habitat loss, primarily through agriculture 
and livestock expansion (Joly et al., 2014; Arroyo-Rodríguez 
et al., 2017). Deforestation significantly contributes to increasing 
greenhouse gas emissions, reinforcing the global climate change 
scenario (DeFries et al., 2007). Addressing this, sustainability 
policies like REDD+ and Clean Development Mechanisms 
(CDM) focus on mitigating emissions by sequestering  
carbon in trees and soil (Lederer, 2012; UNFCCC, 2023). 

The accurate measurement of the aboveground biomass 
(AGB) is essential for determining the aboveground carbon 
(AGC) stored in wood (Chave et al., 2009). Although there 
is already information on the capacity of carbon stocks in 
the world’s forest biomes (Pan et al., 2011; Heinrich et al., 
2023), tropical regions, such as the Atlantic Forest domain, 
lack accurate AGB and AGC estimations due to their taxonomic 
complexity and difficulty in obtaining reliable field data, 
essential for the calculations of allometric models (Chave 
et al., 2014).  Furthermore, field work in tropical regions is 
hard and challenging (de Lima et al., 2022).

To obtain the most accurate estimates of AGB and AGC 
in a forest, considering the wood density of all occurring 

species would be ideal. However, this is hardly achieved.  
The high richness and abundance of individuals within tropical 
forests and the high complexity of obtaining and processing 
wood samples are the main strains. Considering this scenario, 
the main approach to forest biomass and carbon estimations 
studies consists of using wood density values of the dominant 
species in the community (Brown et al., 1989; Baker et al., 2004; 
Saatchi et  al., 2011; Flores and Coomes, 2011). However, 
most of the studies use wood density values from databases 
or literature, not considering that the wood density of a 
species may vary according to the different environmental and 
geographical factors that the species occur (Fearnside, 1997; 
Swenson and Enquist, 2007), leading to less accuracy of the 
AGB and AGC measurements in forests.

Little is known about the semideciduous seasonal forests 
(Atlantic Forest’s largest remaining phytophysiognomy) 
capacity to store carbon, even more in the Zona da Mata 
of Minas Gerais (southeastern Brazil), which makes any 
carbon policy unfeasible. Some studies on carbon storage 
have been developed in this (Borges et al., 2020, 2021; Pyles 
et al., 2020; Costemalle et al., 2023) but consider secondary 
information for wood density from the literature database. 
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Here, we analyze the AGC stock of the tree component in a 
secondary forest remnant in the municipality of Ewbank da 
Câmara, Minas Gerais, based on the vegetation inventory and 
samples of wood density of the dominant species. 

This study was carried out in a 30ha remnant forest in 
the NIASSA-UFJF (Núcleo de Integração Acadêmica para 
Sustentabilidade Socioambiental – Federal University of 
Juiz de Fora), a former livestock farm in the rural area of the 
municipality of Ewbank da Câmara – State of Minas Gerais 
(-21.581160, -43.568307). The studied area, now protected 
from direct anthropogenic disturbance, is a remnant of a 
second-growth forest, classified as a semideciduous seasonal 
montane Atlantic Forest (IBGE, 2012). Historically, the Atlantic 
Rainforest domain has a lengthy land-use background, mainly 
converting the natural forest landscape to agriculture and 

pastures (Coelho et al., 2022). As a second-growth forest, 
the studied remnant carries that background, and satellite 
images show that its form and area have been the same since 
the 80s. Moreover, according to local people’s information, 
the forest stands for more than 50 years and was used by 
former farmers for low-impact activities such as minor 
selective logging and hunting until the ’00s.

We established 30 random permanent plots (15 x 12 m) 
corresponding to 0.5 ha in the remnant. Within each plot, 
we measured the diameter at breast height (DBH) and height 
of all living trees with DBH ≥ 5 cm. Trees were collected 
and taxonomically identified using the Leopoldo Krieger 
Herbarium (CESJ-UFJF) collection. The phytosociological 
structure was analyzed according to Kent & Coker (1992) 
(Table 1).

Table 1. Phytosociological parameters and wood density of the 20 dominant species in the seasonal Atlantic Forest at Ewbank da Câmara, 
Zona da Mata, Minas Gerais State, Brazil. BA = basal area (m2.ha-1); AD= absolute density; RD= relative density (%); AF = absolute 
Frequency; RF = relative frequency (%); ADo= absolute dominance; RDo= relative dominance (%); IV= importance value;  WDmean = 
mean wood density (g.cm-3).

Species BA AD RD AF RF ADo RDo IV WDmean

Lacistema pubescens Mart. 1.029 184 14.7 22 4.00 2.06 5.88 24.67 0.39
Piptadenia gonoacantha  

(Mart.) J.F.Macbr. 0.751 10 0.80 5 0.90 1.50 4.29 6.00 0.43

Sorocea guilleminiana Gaudich. 0.72 91 7.31 15 2.72 1.45 4.16 14.20 0.48
Tachigali vulgaris  

L.G.Silva & H.C.Lima 0.709 20 1.60 9 1.63 1.42 4.05 7.30 0.38

Platypodium elegans Vogel 0.554 7 0.56 7 1.27 1.10 3.16 5.00 0.56

Xylopia brasiliensis Spreng. 0.532 53 4.26 1 2.90 1.06 3.04 10.21 0.48

Ocotea bicolor Vattimo-Gil 0.491 35 2.81 14 2.54 0.98 2.80 8.16 0.45

Inga laurina (Sw.) Willd. 0.478 12 0.96 7 1.27 0.95 2.7 4.97 0.52

Casearia sylvestris Sw. 0.477 24 1.92 13 2.36 0.95 2.73 7.02 0.42

Xylopia sericea A.St.-Hil. 0.466 28 2.25 8 1.45 0.93 2.66 6.37 0.46

Cecropia hololeuca Miq. 0.455 5 0.40 4 0.72 0.910 2.60 3.73 0.37

Lamanonia ternata Vell. 0.437 3 0.24 3 0.54 0.87 2.50 3.28 0.50
Didymopanax morototoni  
(Aubl.) Decne. & Planch. 0.399 16 1.28 12 2.18 0.79 2.28 5.75 0.29

Tovomitopsis paniculata  
(Spreng.) Planch. & Triana 0.352 22 1.76 7 1.27 0.70 2.01 5.05 0.38

Guapira opposita (Vell.) Reitz 0.33 27 2.17 8 1.45 0.66 1.91 5.53 0.31

Matayba elaeagnoides Radlk. 0.30 17 1.36 10 1.81 0.60 1.74 4.92 0.31

Miconia urophylla DC. 0.303 46 3.6 10 1.81 0.60 1.73 7.25 0.40

Machaerium nyctitans (Vell.) Benth. 0.280 13 1.04 8 1.45 0.56 1.60 4.10 0.50
Protium heptaphyllum  

(Aubl.) Marchand 0.263 7 0.5 5 0.90 0.52 1.50 2.97 0.38

Cupania vernalis Cambess. 0.254 28 2.25 11 2.00 0.50 1.45 5.70 0.38

Total 9.606 648 52. 194 35.27 19.21 54.89 142.2 -

Other taxa 7.893 596 47.9 356 64.72 15.78 45.10 157.7 -

General total 17.49 1244 100 550 100 34.99 100 300 -
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To assess the aboveground carbon (AGC) of the forest, 
we initially obtained wood density data for the species 
with higher basal area (BA) and importance value (IV). 
The selected species, corresponding to >50% of total BA 
and IV, had one to three tree individuals sampled based on 
absolute density. Palms, tree ferns, unidentified, or pending 
identification species were excluded, and the next identified 
species in ranking replaced them. AGB calculations excluded 
these taxa as well. 

We analyzed wood density following Pérez-Harguindeguy 
et al., (2013). We used an increment borer (model Haglöf 
Sweden) inserted at 1.30 m DBH on the tree trunk to a 
depth equal to half the diameter to obtain the sample. 
Afterward, we sealed the hole to prevent timely contamination 
after the procedure.

We determined the saturated volume for each wood 
sample using the water displacement method. We dried the 
samples at an average temperature of 100°C for 72 hours to 
obtain the dry mass. To calculate the wood density value 
(g.cm-3) per species, we divided the dry mass value by the 
saturated volume.

For the AGB calculation, we used the global allometric 
equation proposed by Chave et al., (2014) for tropical forests:

AGBest = exp[-1.803-0.976E+ 0.976𝑙𝑛(ρ) +2.673𝑙𝑛(D)- 
0.0299[𝑙𝑛(D)]2]

In which ρ is the wood density of each species, and D 
represents the diameter at the breast height of the individual. 
All the AGB values obtained for the individuals were summed 
and extrapolated to the community in Mg.ha-1. As AGC 

concentration of the different parts of a tree is generally 
assumed to be 50% of the AGB (Brown, 1997), we multiplied 
the AGB value by 0.5 and obtained the estimation of AGC 
stored for the forest remnant.

We sampled 1244 trees with a total basal area of 17.50 m².ha-1 
and density of 2888 ind.ha-1. We found 174 morphospecies 
distributed in 51 families and 85 genera. The 20 species that 
counted for 54.88% of the total basal area and 52.00% of the 
relative density are represented in Table 1.

The aboveground biomass (AGB) estimated for the 
forest remnant was 116.11 Mg.ha-1, corresponding to an 
aboveground carbon (AGC) of 58.05 Mg.ha-1. The AGC 
estimated in our study was similar to other studies in second-
growth semideciduous seasonal forests of Minas Gerais state 
(Table 2). Especially the ones with a similar background and 
no recent record of human disturbance (Torres et al., 2013; 
Gaspar et al., 2014; Silva et al., 2018). Moreover, our AGC 
estimation was higher than in studies carried out in forest 
edge and second-growth forests with a recent record of 
human disturbance (Ribeiro et al., 2010; Da Rocha et al., 
2019; Coelho et al., 2022) (Table 2). However, our carbon 
stock was remarkably lower than that Coelho et al. (2022) 
found in an old-growth semideciduous seasonal forest 
in the Rio Doce basin. High AGC in old-growth forests 
is expected since these systems have a long time to grow 
and gain secondary slow-growth species that store more 
carbon in their structure. Early successional stage forests 
and recently disturbed forests are mainly composed of 
fast-growth pioneer species that store less carbon with their 
short life cycle and life strategy (Guariguata & Ostertag, 
2001; Villa et al., 2019; Coelho et al., 2022). 

Table 2. Carbon stock in the seasonal Atlantic Forest at Ewbank da Câmara, Zona da Mata, MG, and comparison with other seasonal 
forests at Minas Gerais State, Brazil. *References: 1Ribeiro et al. (2010); 2TORRES et al. (2013); 3GASPAR et al. (2014); 4SILVA et al. (2018); 
5ROCHA et al. (2019); 6COELHO et al. (2022).

Locality* Carbon stock (Mg.ha-1) Methodology Area disturbance background

Ewbank da 
Câmara 58.05 Allometric equations (AGC) using  

WD collected from the study species
Secondary forest with low-impact activities 

in the past 50 years

Viçosa1 19.50 Allometric equations of tree volume 
using WD from specific bibliography

Former pasture in 30 years of natural 
regeneration

Viçosa2 46.76 Local allometric equations using  
the biomass of tree branches

Former pasture; selective logging, eucalyptus 
plantation, 20 years of natural regeneration

São João 
Evangelista3 58.91 Allometric equations of tree volume 

using WD from specific bibliography Information not described by the authors

Itutinga4 55.91 Biomass allometric equations using 
WD collected from the study species No record of recent human disturbance

Viçosa5
45.43 (forest edge) Local allometric equations using the 

biomass of tree branches Information not described by the authors
63.71 (forest interior)

Rio Doce Basin6

130.70 (old-growth)
Allometric equations (AGB) using  

WD from global database

Old-growth: remnant inside the Rio Doce 
State Park, protected since 1962

18.20 (secondary) Second Growth: areas previously occupied by 
plantations, with at least 30 years of land use

http://g.cm
http://Mg.ha
http://ind.ha
http://Mg.ha
http://Mg.ha
http://Mg.ha


Floresta e Ambiente 2025; 32(2): e20240039

4 - 5 Caldeira N, Antunes K, Vieira WD, Barros NO, Carvalho FA

4

Nevertheless, the carbon stock in our study is representative  
of medium successional stage second-growth forests, 
and with its growing and developing perspective over the years,  
we expect an income in its biomass and carbon stock (Torres 
et al., 2013; Gaspar et al., 2014). However, we should see this 
carbon increment trend with parsimony. Although there is 
a tendency for carbon increase throughout the successional 
process in secondary forests, recent studies have shown a decline 
in long-term carbon sink in the Amazon secondary rainforests 
due to droughts, causing climate-induced tree mortality (Brienen 
et al., 2015; Hubau et al., 2020). In the Atlantic Forest domain, 
Maia et al. (2020), analyzing 32 seasonal forest sites monitored 
between 1987 and 2020, found a long-term decline in the carbon 
sink, and the driest and warmest sites have already moved from 
carbon sinks to carbon sources. On the other hand, Ferreira et al. 
(2023) highlight that AGB and carbon stocks can potentially 
increase in large fractions across the Atlantic Forest domain in 
the next few decades. The value of 58.05 Mg.ha-1 stored carbon we 
found for the forest was surprising for a secondary small Atlantic 
Forest remnant. Although it has been around 50 years without 
considerable anthropogenic disturbance, it carries the background of  
the tremendous secular destruction of the region. Furthermore, 
the remnant can be used as a reference for carbon policies, such 
as REDD+ and CDM. However, in the current global warming 
scenario and climate change, long-term studies must be conducted 
in the studied forest over the coming decades to investigate 
its trends in carbon stocks, gains, losses, and net carbon sink. 
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