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ABSTRACT
The aim of this work was to model the spatial dependence of fuel material deposition on the ground 
in a pine stand, and to simulate and evaluate sampling procedures for estimating it. Branches 
with diameters up to 0.7 cm (A) and from 0.71 to 2.5 cm (B) were collected. Subsequently, the 
structures of systematic sampling and linear clusters were simulated for 50%, 33% and 23% of 
the total sample size, and the spatial dependence was evaluated through geostatistical modeling. 
The systematic sampling was suitable, with representative spatial coverage and accurate estimators, 
whereas linear clusters were inadequate. The reduction of the number of sample units affected the 
estimators, but their sampling errors did not exceed 10% for the sample sizes of 23% for class A 
of fuel material and 50% for class B in the systematic structure, resulting in consistent estimates.
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1. INTRODUCTION

Forest fuel material consists in every living or dead 
biomass susceptible to ignition and burn in forest fires 
(Fuller, 1991; Agee & Skinner, 2005) and is the main 
driver of nutrient cycling in forest formations. However, 
despite the ecological importance of biomass deposited 
on the soil, sampling of fuel material has rarely been 
addressed in forest inventories (Ribeiro et al., 2012). 
Yet, surveying the amount of fuels in forest stands 
is important for adoption of preventive silvicultural 
practices (Soares, 2002).

Normally, thinner materials with diameters up 
to 2.5 cm are the first to burn in a forest fire, and 
for that reason, they are considered dangerous or 
semi-dangerous (Beutling, 2009). Thus, according 
to Bartlett et al. (2001), the main objective of studies 
employing statistical inference is to collect data 
that may be representative of the whole population, 
considering a maximum acceptable error. However, 
the optimization problem in forest inventories is 
important to choose an optimal sample structure 
that maximizes the value of the necessary data, taking 
into account a limited available budget (Brassel & 
Lischke, 2001).

Appropriate methodologies applied in forest 
fuel material inventories should aim to optimize the 
sampling procedure, to provide accurate assessments 
(Péllico & Brena, 1997). Overestimation can result 
in economic adversities for forestry companies due 
to the high costs of inventories (Fink, 2003). On the 
other hand, underestimation can negatively affect the 
planning of silvicultural activities and the allocation of 
resources for preventing and fighting fires. Other factors 
are related to greenhouse gas release from biomass 
combusted in forest fires (Smith et al., 2004) and the 
production of clean energy (Nogueira et al., 2000; 
Souza, 2010).

Thus, considering the hypothesis that production 
of forest residues has spatial variability and that 
systematization of sampling units allows obtaining 
statistically appropriate estimates in forest inventories, 
the objective of this study was to simulate and evaluate 
sampling procedures for estimation of forest fuel 
material with different sample sizes, and to model 
the spatially dependent variation of this material on 
the ground of a pine stand.

2. MATERIAL AND METHODS

2.1. Study area

The study was developed in the experimental 
station of the Federal University of Paraná located in 
the municipality of Rio Negro, Paraná State, Brazil 
(26° 06’ S and 49° 47’ W), with average altitude of 
780 m. According to Batista (1995) and Maack (2002), 
the climate of the area is temperate humid (Cfb), based 
on Koppen classification, with average temperatures 
of 22 °C in the hottest month and more than five 
frosts per year.

The experimental station covers an area of 
approximately 120 ha, with a significant part consisting 
of forest plantations. A Pinus elliottii Engelm stand 
established on flat terrain in 1984, with initial spacing 
of 2 × 2.5 m and without silvicultural treatment since 
its deployment, was selected for the present study. 
The last inventory in the area was conducted in 2005 
and estimated a volume of 560 m3 ha–1 and basal area 
of 47.16 m2 ha–1 (Pereira, 2009).

2.2. Fuel material collection

The experiment was carried out in the total area 
of four tracks positioned between planting rows on 
the North-South direction. Each track was segmented 
in 15 rectangular sampling units of 1.2 m × 0.6 m 
(Figure 1), in which fuel material was collected and 
separated according to diametric classes following the 
methodology proposed by Brown et al. (1982). For this, 
two classes of material were adopted: A)  branches 
with diameters of up to 0.7 cm; and B) branches with 
diameters between 0.71 cm and 2.5 cm. Material with 

Figure 1. Design of the sampling structure used for 
quantification of fuel material in a pine stand.
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diameter greater than 2.5 cm was not sampled, since 
they represent a small fraction of fuel material, high 
moisture content variation, as well as slow deterioration 
speed and, thus, do not present high risk for fire 
occurrence (Beutling, 2009).

2.3. Geostatistical modeling

Average production of fuel material and the coefficient 
of variation (cv) were calculated for classes A and B. 
Posteriorly, geostatistical analysis was employed to 
model spatial patterns of fuel material in the pine stand 
for the following sampling intensities: 100% (Figure 1), 
50% (Figure 2a), 33% (Figure 2b) and 23% (Figure 2c) 
of the potential sample size, through calculation of 
experimental semivariance (1), taking into account the 
central geographical positioning of sampling units in 
the field, the subsequent calculation of distances (h) 
and numerical differences of the variable in the grid.

In order to estimate semivariances, Spherical (2), 
Exponential (3) and Gaussian (4) models were adjusted. 
The structure of the semivariogram included the 
nugget effect (C0), corresponding to the semivariance 
for a distance value equal to zero; the sill (C0 + C), 
representing the stabilization of semivariogram values 
near to the variance of the data; the variance a priori 
(C), given by the difference between the sill (C0 + C) 
and the nugget effect (C0); and the range (a), defined 
as the distance at which the semivariogram reaches 
a sill, indicating the boundary where sampling units 
correlate among themselves (Vieira 2000).
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Where: γ(h) = semivariance of the variable Z(xi); 
h = distance (m); N(h) = number of pairs of measured 
points Z(xi) and Z(xi + h), separated by h; C0 = nugget 
effect; C = variance a priori; and a = range.

The GS+ version demonstration program 5.1 
(Robertson, 2008) was used to adjust the semivariogram. 
Evaluation and selection of the best adjustments were 
based on the least sum of squared deviations (SQD) and 
the largest determination coefficient (R2). Finally, with 
the parameters of adjusted semivariogram and with 
the observed values of neighboring sampling units, 
production of fuel material was spatialized along the 
forested area by punctual ordinary kriging (Andriotti, 
2003; Yamamoto & Landim, 2013).

2.4. Sampling procedures

Deposition of fuel material, expressed in megagrams 
per hectare (Mg ha–1), was quantified in all sampling 
units, representing the maximum value of deposition 
of the two classes of sampled materials. Subsequently, 
estimates were calculated for 50% (Figure 2a), 33% 
(Figure  2b) and 23% (Figure  2c) of the potential 
sample size, in respectively 30, 20 and 14 sampling 
units, whereas tracks were the primary units (k1) and 

Figure 2. Structure allocation of units in different intensities of systematic sampling for evaluation of fuel material 
in a pine stand.
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plots within these tracks were the secondary units (k2) 
systematically sampled.

Additionally, the statistical formulation presented 
by Péllico & Brena (1997) for systematic sampling was 
used to estimate the mean (5), variance of the mean 
(6), standard error (7), absolute sampling error (8) 
and sampling error in percentage (9), and confidence 
interval for the mean (10), which were calculated for 
the different simulated sample sizes as follows:
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Moreover, each track was considered as a linear cluster 
(Figure 3a) and, for the application of this sampling 
procedure, the following estimators were calculated 
for the simulated sample intensities (Péllico & Brena, 
1997): sample mean (11), intra-cluster correlation 
coefficient (12), variance of the mean (13), standard 
error (14), absolute sampling error (15) and sampling 
error in percentage (16) and confidence interval for 
the mean (17).
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Where: M = number of subunits of the cluster; n = number 
of cluster sampled; Xij = value of unit i observed in the 

Figure 3. Semivariograms, in different sampling intensities, for classes A and B of fuel material deposition in a pine 
stand.
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cluster j; 2
es  = variance between clusters; 2

ds  = variance 
within clusters; 2 2 2

x e ds s s= +  = total variance; t = Value of 
Student’s t distribution; and P = associated probability.

4. RESULTS AND DISCUSSION

The average production of fuel material was equal 
to 5.66 Mg ha–1 (cv = 16%) and 0.61 Mg ha–1 (cv = 28%) 
for classes A and B, respectively, where the spatial 
dependence of fuel material deposited in pine stand 
was confirmed by the possibility of adjustment of 
semivariogram models (Table 1). Lower values were 
obtained to a unit of nugget effect (C0), varying from 
0.060 to 0.143 for class A and from 0.010 to 0.013 for 
class B of fuel material. This showed that the variance 
caused by non-sampling errors or unidentified variations 
was low (Vieira, 2000).

Range (a) expresses the maximum distance at 
which two sampling points were spatially correlated, 
corresponding to the radius of the areas within which 
spatial variability of neighboring samples was more 
similar. Thus, the ranges between 1.797 m and 4.575 m 
for class A, and 1.100 m and 1.500 m for class B (Table 1) 
represented the distances within which the analyses 
led to the estimates with greater precision (Vieira, 
2000; Chig et al., 2008), while evaluations in intervals 
beyond the range were independent from each other.

In addition, coefficients of determination (R2) 
were above 0.6 for class A (Table  1), what shows 
that the sampling grid was efficient to detect spatial 
characteristics of fuel material deposition, particularly 
with the Gaussian model for classes A and B, with which 
the lowest values of the sum of squared deviations 
(SQD) were obtained.

Thus, the semivariograms selected for estimating 
the spatial distribution of fuel material deposition in 

the pine stand (Figures 3a, e) demonstrated the effect 
of increasing semivariances related to increasing 
distances until reaching a regular value (Pereira et al., 
2011). However, this was not identified for 50%, 33% 
and 23% sampling intensities, where semivariances 
showed irregular distribution in scaled semivariograms. 
This indicates that the spatial component for smaller 
distances was not detected.

Table  2 shows the parametric mean (X ) and 
estimates of fuel material deposition for the two 
classes, the three systematic sampling intensities and 
the linear clusters. The mean quantity of material of 
class A, 5.66 Mg ha–1, was nine-fold superior than 
the quantity in class B, 0.61 Mg ha–1. This is probably 
due to the time of permanence of fuel material after 
falling on the ground, as the methodology used in the 
present study aimed to include newly fallen but also 
the oldest material.

Considering the selected semivariograms, thematic 
maps of fuel material deposition were built through 
punctual ordinary kriging (Figure 4). The apparent 
homogeneity of fuel material on the ground was contrasted 
with the real spatial heterogeneity (Figure 4a, b) in the 
pine stand detected through geostatistical evaluation 
of the fuel material deposition. This heterogeneity 
is mainly a result of the variability of growth and 
size of individuals measured in adjacent areas where 
the fuel material was collected. Therefore, sampling 
procedures that capture such spatial variability is 
essential for quantitative accurate statistical estimates 
of fuel material deposition.

Estimated fuel material deposition means ( )x  
ranged from 5.64 Mg ha–1 to 5.69 Mg ha–1 in class A, 
while varied from 0.62 Mg ha–1 to 0.63 Mg ha–1 in class 
B (Table 1). In both cases, the means were close to the 
parametric values, which indicated the effectiveness 
of the sampling structures used in the population. 

Table 1. Parameters of the semivariogram adjusted for fuel material deposition in classes A and B in a pine stand.

Fuel material Geostatistical model C0 C a (m) R2 SQD

Class A
Spherical 0.060 0.593 3.542 0.991 2.2 × 10-3

Exponential 0.086 1.083 4.575 0.968 7.5 × 10-3

Gaussian 0.143 0.608 1.797 0.993 1.8 × 10-3

Class B
Spherical 0.010 0.025 1.120 0.622 2.6 × 10-5

Exponential 0.010 0.025 1.500 0.614 2.6 × 10-5

Gaussian 0.013 0.025 1.100 0.660 2.3 × 10-5

Where: C0 = nugget effect; C = variance a priori; a = range; R2 = coefficient of determination; and SQD = sum of squared deviations.
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However, the values of the standard error ( )xs  tended 
to increase with the reduction of the sample size (n). 
In general, the larger the numbers of observations 
are, the more precise are the estimates, although this 
does not prevent an experiment with lower sampling 
intensity to provide estimates closer to parametric 
values (Pimentel-Gomes, 2009).

The intra-cluster correlation coefficient (r) showed 
greater heterogeneity of fuel material deposition between 
clusters than between sampling units within linear 
clusters. This indicates that this sampling procedure 

is not suitable for this type of evaluation, as it is 
recommended that, for the effective application of this 
sampling process, r values should not exceed the interval 
between 0 and 0.4 for intra-cluster correlation (Péllico 
& Brena, 1997). Thus, r values between 0.43 and 0.65 
observed in classes A and B of fuel material are 
related to greater spatial variability of deposition in 
the forest stand, indicating that the variance between 
clusters is superior to the variance within clusters and 
corroborating with the spatial variability observed in 
the geostatistical modeling (Figure 4).

Table 2. Estimates of the fuel material in classes A and B, in different sampling intensities using systematic sampling 
and linear clusters, in pine stand.

Fuel  
material

X
n

x
r xs Ea

E% x xCI x ts X x ts P − ≤ ≤ +  = 
Mg ha–1 Mg ha–1 Mg ha–1

Systematic sampling procedure

Class A 5.66

50% 5.69 - 0.08 0.16 2.7% 5.53 Mg ha–1 ≤ X  ≤ 5.85 Mg ha–1

33% 5.64 - 0.11 0.23 4.1% 5.41 Mg ha–1 ≤ X  ≤ 5.87 Mg ha–1

23% 5.68 - 0.18 0.39 6.9% 5.28 Mg ha–1 ≤ X  ≤ 6.07 Mg ha–1

Class B 0.61

50% 0.62 - 0.02 0.05 7.7% 0.57 Mg ha–1 ≤ X  ≤ 0.66 Mg ha–1

33% 0.62 - 0.04 0.08 12.8% 0.54 Mg ha–1 ≤ X  ≤ 0.70 Mg ha–1

23% 0.63 - 0.04 0.10 15.2% 0.53 Mg ha–1 ≤ X  ≤ 0.72 Mg ha–1

Sampling procedure in linear clusters

Class A 5.66

50% 5.69 0.65 0.28 0.90 15.9% 4.79 Mg ha–1 ≤ X  ≤ 6.59 Mg ha–1

33% 5.64 0.48 0.31 1.00 17.6% 4.64 Mg ha–1 ≤ X  ≤ 6.63 Mg ha–1

23% 5.68 0.60 0.39 1.24 21.8% 4.44 Mg ha–1 ≤ X  ≤ 6.92 Mg ha–1

Class B 0.61

50% 0.62 0.58 0.08 0.17 27.7% 0.45 Mg ha–1 ≤ X  ≤ 0.79 Mg ha–1

33% 0.62 0.43 0.07 0.23 37.2% 0.39 Mg ha–1 ≤ X  ≤ 0.85 Mg ha–1

23% 0.63 0.57 0.08 0.25 40.2% 0.37 Mg ha–1 ≤ X  ≤ 0.88 Mg ha–1

Where: X  = reference mean; n = number of sample units; x  = sample mean; r = intra-cluster coefficient of correlation; xs  = standard 
error; Ea = absolute sampling error; E% = sampling error in percentage; CI = confidence interval for the mean; and P = probability 
level of 95%.

Figure 4. Spatial distribution of fuel material deposition in classes A and B in a pine stand.
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Furthermore, the absolute sampling error (Ea) 
and the sampling error in percentage (E%) increased 
with the reduction of the sample size (n). According to 
Pimentel-Gomes (2009), for the same standard error, 
sampling errors tend to decrease with the increase of 
sample size, enhancing the accuracy of the estimate 
of the mean due to more degrees of freedom in the t 
distribution. It was also observed that in both classes 
of fuel material, the reduction of the sampling grid 
caused expansion of the confidence interval for the 
mean (CI).

The confidence interval for the mean (CI) tended 
to increase with decreasing sample size (n), so that the 

parametric mean ( )X  remained within a larger interval 
for the samples of 23% of the population, due to its weak 
representativeness of population variability. However, 
the parametric mean was expected to occur within a 
limited interval range, so as to ensure the validity of the 
less intense sampling. Moreover, simulations showed 
that, in many cases, sample sizes around 30 sampling 
units provide appropriate approximations for practical 
applications.

Authors such as Brown (1974) and Ribeiro et al. 
(2012) have considered that sampling errors of up to 
20% are acceptable for estimating forest fuel material, 
because of the high variability of dimensions of the 
objects measured. On the other hand, when there is 
an interest in the potential use of this product, errors 
of up to 10% are most appropriate. Consequently, the 
values found in the present study are within acceptable 
limits for the sample sizes of 23% for the class A and 
50% for the class B when evaluating fuel material using 
the systematic sampling process.

5. CONCLUSION

Fuel material deposition of branches with diameters 
up to 0.7 cm, and branches with diameters from 
0.71 cm to 2.5 cm is spatially dependent and presents 
a pattern that can be assessed through geostatistical 
analysis. Variability comes from the growth and size 
of individuals measured in adjacent areas where the 
fuel material was collected. Spatial behavior of fuel 
material confirms the need of using appropriate 
sampling methods to accurately detect this variable 
in forest inventories.

Systematic sampling is appropriate and recommended 
for estimating fuel material deposition in pine stands 
when representative spatial coverage of the population 
and accurate statistical estimators are employed. On the 
other hand, the sampling structure in linear clusters 
was considered inadequate for estimating this variable 
in the study area due to the heterogeneity among the 
clusters.

The reduction in the number of sampled units 
affect the estimators of fuel material deposition in 
the pine stand, but the respective sampling errors 
do not exceed the maximum limit of 10% for sample 
sizes of 23% in class A and of 50% in class B using the 
systematic sampling process, consequently resulting 
in consistent estimates.
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