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ABSTRACT
The aim of this study was to evaluate the performance of four ground filtering algorithms to 
generate digital terrain models (DTMs) from airborne light detection and ranging (LiDAR) data. 
The study area is a forest environment located in Washington state, USA with distinct classes of 
land use and land cover (e.g., shrubland, grassland, bare soil, and three forest types according 
to tree density and silvicultural interventions: closed-canopy forest, intermediate-canopy 
forest, and open-canopy forest). The following four ground filtering algorithms were assessed: 
Weighted Linear Least Squares (WLS), Multi-scale Curvature Classification (MCC), Progressive 
Morphological Filter (PMF), and Progressive Triangulated Irregular Network (PTIN). The four 
algorithms performed well across the land cover, with the PMF yielding the least number of 
points classified as ground. Statistical differences between the pairs of DTMs were small, except 
for the PMF due to the highest errors. Because the forestry sector requires constant updating of 
topographical maps, open-source ground filtering algorithms, such as WLS and MCC, performed 
very well on planted forest environments. However, the performance of such filters should also 
be evaluated over complex native forest environments.
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1. INTRODUCTION

Airborne Light Detection and Ranging (LiDAR) 
is an active remote sensing technology that combines 
laser and positioning measurements to survey and 
map with high accuracy objects over a given surface 
(Carter  et  al., 2012). Airborne LiDAR has been a 
prominent technology in the representation of surfaces, 
especially in the generation of digital terrain models 
(Montealegre et al., 2015).

The Digital Terrain Model (DTM) derived from 
airborne LiDAR data is a representation of the bare 
surface, in other words, a surface free of any manmade 
and/or natural objects. DTMs are very useful for the 
delineation of watersheds and stream network extraction 
and are also a good source of data to perform geological 
and morphological analyses, as well as road planning 
(Sulaiman et al., 2010). However, the main challenge 
to obtain an accurate representation of a bare terrain is 
the efficiency of correctly classifying the ground returns 
out of the entire LiDAR dataset. According to Susaki 
(2012), the main errors that occur during the filtering 
of ground returns in a LiDAR dataset can be classified 
into two categories: i) type I or omission error, when the 
returns belonging to the ground are classified as other 
objects, such as vegetation or buildings; and (ii) type II 
or commission error, when small objects are erroneously 
classified as ground points. In addition, the accuracy of 
digital terrain modeling also depends on several other 
factors: a) sensor parameters and flight characteristics, 
such as the LiDAR pulse density (pulses∙m-2), which is 
a consequence of factors such as elevation and flight 
speed (Ruiz et al., 2014); b) characteristics of the land 
surface, such as topography and presence of dense and 
complex vegetation coverage (Sithole & Vosselman, 
2004); and c) the processing techniques used to generate 
the DTM, such as the ground filtering algorithm and 
subsequently the interpolation method, as well as the 
spatial resolution of the DTM (Liu, 2008).

Currently, there are many algorithms available for 
filtering ground returns from airborne LiDAR data; 
some of them can be found in Montealegre et al. (2015), 
Julge et al. (2014), and Tinkham et al. (2011). The most 
well-known algorithms are those based on triangulated 
irregular networks - TIN (implemented in LAStools, 
Isenburg, 2015), weighted linear least squares - WLS 
(Kraus & Pfeifer, 1997, 1998), multi-scale curvature 

classification - MCC (Evans & Hudak, 2007), and 
progressive morphological filter - PMF (Zhang et al., 
2003, Zhang & Whitman, 2005).

Although there are several options to select algorithms 
for filtering ground returns from airborne LiDAR 
datasets, few studies have addressed the performance 
of these algorithms for DTM generation, especially 
across a gradient of different types of land use and land 
cover commonly found in planted forest environments. 
Considering this theme, the main objective of this 
study was to evaluate the performance of four ground 
filtering algorithms used to generate DTMs.

2. MATERIAL AND METHODS

2.1. Study area

The study was conducted in a forest area belonging to 
Capitol State Forest located in western Washington state, 
USA. The study area covers approximately 122 hectares 
(Figure 1) and, according to Andersen et al. (2005), 
the forest is composed of species of conifers, such as 
douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), 
western hemlock (Tsuga heterophylla (Raf.) Sarg.), and 
western red cedar (Thuja plicata Don.).

2.2. LiDAR data acquisition and processing

The LiDAR data are available at the Pacific 
Northwest Research Station (PNRS) portal of the US 
Forest Service (USFS). The LiDAR dataset is freely 
available for educational purposes. The LiDAR point 
cloud was downloaded from the official site of the 
LiDAR FUSION/LDV data processing and visualization 
program (McGaughey, 2015). The Saab TopEye system 
was shipped on a helicopter that flew over the entire 
study area (Figure 1). According to the data description, 
the LiDAR survey was performed in 1999 using a 
discrete feedback sensor. LiDAR data collection was 
performed with the following specifications: flying 
height of 200 m; flying speed of 25 m·s-1; swath width of 
70 m, forward tilt of ± 8 degrees; laser pulse density of 
3.5 points·m-2; laser footprint of 40 cm, and laser pulse 
rate of 7000 Hz. For each return, the number of pulses, 
number of returns per pulse, corresponding Universal 
Transverse Mercator (UTM) coordinates, elevation, 
acquisition angle, and return intensity were recorded.
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2.3. Land Use and Land Cover description

Concomitant with the LiDAR survey, aerial 
photographs were also acquired. These images were 
orthorectified by the USFS and resampled to spatial 
resolution of 30cm. Aiming to evaluate the performance 
of four ground filtering algorithms in different classes 
of land use and land cover, a visual classification was 
performed (Figure  1). The following classes were 
considered: Class I: Shrubland (4.72ha); Class II: Closed 
canopy forest (canopy cover ≥ 70%; 35.85ha); Class III: 
Open canopy forest (canopy cover ≤ 40%; 19.75ha); 
Class IV: Intermediate canopy forest (40% ≥ canopy 
cover ≤ 70%; 35.57ha); Class V: Grassland (3.89ha); 
and Class VI: Bare soil (21.93ha). Shrubland is a 
vegetation community characterized by shrubs, also 
including small sparse trees. The open, intermediate and 
closed canopy forest classes are related to tree density 
and canopy coverage after silvicultural interventions. 
Grassland is a class in which the vegetation is dominated 
by grasses rather than shrubs or small trees, although 
they may occur sparsely in some locations. Bare soil 
corresponds to areas with exposed terrain. In general, 
this class consists of areas in which clear cutting or 
harvesting of the trees occurs.

2.4. Ground filtering algorithms for the 
filtering procedures and classifying ground 
returns

Four different ground filtering algorithms were 
selected to generate DTMs. The four ground filtering 
algorithms used in this study are described ahead:

i)	Weighted Linear Least Squares (WLS). 
The  WLS algorithm is available in GroundFilter 
t o o l  i m p l e m e n t e d  i n  F U S I O N / L D V. 

The  FUSION  v.3.30  (McGaughey, 2015) is free 
software developed and maintained by the 
US Forest Service and used for LiDAR data 
processing and visualization. The WLS algorithm 
was first proposed by Kraus & Pfeifer (1997), 
and it combines both filtering and interpolation 
procedures. The chosen window size (cell size) for 
WLS was seven meters;

ii)	Multi-scale Curvature Classification (MCC). 
The MCC algorithm is available in the MCC‑LiDAR 
software. The MCC was also developed and 
maintained by the USFS. The MCC was first 
proposed by Evans & Hudak (2007), and it aims 
to generate DTMs from LiDAR data. The MCC 
algorithm operates through the elimination of 
points exceeding a given curvature threshold 
calculated over an interpolated surface known 
as spline (Evans & Hudak, 2007). Adjustment is 
performed with scale and curvature parameters. 
After testing several parameters, we chose the 
parameters of scale and curvature of 1.5 and 0.3, 
respectively;

iii)	Progressive Morphological Filter (PMF). 
The  PMF algorithm was first proposed by 
Zhang et al. (2003), and is currently available in 
ALDPAT software. The ALDPAT was developed 
by the National Center for Airborne Laser 
Mapping (NCALM). It is also free software to 
process LiDAR datasets. The PMF filters the 
ground returns using the elevation differences 
among cells of a moving window calculated 
through morphological operations such as 
erosion and dilation (Montealegre  et  al., 2015; 
Zhang  et  al., 2003). In this study, after testing 
several parameters, the following settings were 
adopted: window size of 3m, initial searching 
radius of 1m, and declivity threshold of 0.08;

Figure 1. Study area location in the USA (A), orthorectified aerial photography of Capitol Forest and land cover 
classes (B). 
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iv)	Progressive Triangulated Irregular Network 
(PTIN). The PTIN algorithm is available in the 
LASground tool found in LASTools (Isenburg, 
2015). LASTools is a compilation of tools 
for LiDAR data processing. Unlike the three 
aforementioned algorithms, LASTools is the only 
commercial algorithm. However, it can be freely 
used for small datasets. Based on the methodology 
proposed by Axelsson (2000), the PTIN divides 
the LiDAR dataset in small blocks. First, the 
algorithm selects the lowest points in each block 
in order to start the filtering procedure. After that, 
a triangulated irregular network (TIN) is built 
with these selected points. Next, an imaginary 
point is added to the point cloud, making a TIN 
densification. Finally, the TIN is progressively 
densified until all points are classified as ground or 
objects on this ground (Montealegre et al., 2015). 
In this study, the LASground tool was executed 
using a window size (step size) of 5m.

2.5. Generating and comparing digital terrain 
models – DTMs

GridSufaceCreate, a tool implemented in 
FUSION/LDV, was used to create DTMs after the 
point cloud classification. This tool uses random 
points to create a grid surface on which the value of 
each cell is the mean elevation of all points within it 
(McGaughey, 2015). DTMs were generated with 1m 
resolution, compatible with the point density from the 
collected LiDAR data. The workflow to generate the 
DTMs is presented in Figure 2. 

For comparison purposes, elevation values from 
20,000 points randomly selected in the study area 
were extracted from the DTMs generated by each 

algorithm to calculate the differences and statistics 
between them. Comparison between the data obtained 
by the classifiers was based on the absolute and 
relative root mean square error (RMSE), according 
to Equation 1 and Equation 2, and the mean absolute 
error (MAE), according to Equation 3.
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where xi is the elevation value from DTM 1, yi is the 
elevation value from DTM 2, ˆ x is the mean elevation 
from DTM 1, and ˆ  y is the mean elevation from 
DTM 2. The elevation values for each land cover class 
generated by the algorithms were also compared with 
each other by the Kolmogorov–Smirnov test using the 
ks.test function from the R software (R Development 
Core Team, 2016).

3. RESULTS AND DISCUSSION

The WLS, MCC, and PTIN ground filtering 
algorithms returned a similar classification of terrain 
points, whereas the PMF showed a distinct pattern 
in relation to the others (Figure 3). The PMF filtering 
generated a homogeneous density of points throughout 
the area, whereas the filtering output from the other 
algorithms resulted in regions with higher density of 
points on roads or open spaces and areas with lower 

Figure 2. Flowchart of the LiDAR data processing.
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density of points, such as the regions of closed canopy 
forest. From the 4,859,996 original points, the WLS, 
MCC, PTIN and PMF algorithms classified as ground 
1,910,755 (39.31%), 1,716,276 (35.31%), 1,327,550 
(27.31%) and 121,071 (2.50%) points, respectively. 
The PMF algorithm classified a smaller number of points 
as ground than the other algorithms, corroborating 
the findings by Sulaiman et al. (2010).

The WLS and MCC filtered point clouds presented 
high density of points, mainly in the eastern region of 
the study area, where the classes of exposed soil and 
low density forest land use are predominant. In this 

region, greater density of ground points was obtained, 
because interception of the laser pulse by the vegetation 
is reduced. The DTMs were created for each algorithm 
using the GridSurfaceCreate tool and the filtered ground 
points. Figure 4 shows the created models as well as 
two terrain profiles for each model, one taken in the 
north-south direction and another in the east-west 
direction of the study area. In general, the generated 
DTMs are very similar. By the Kolmogorov-Smirnov 
test, the elevation distributions from the DTMs 
generated by the algorithms were statistically similar 
(Ks: D < 0.01; p-valor > 0.8) at a significance level 

Figure 3. Three-dimensional LiDAR point cloud after ground filtering by (A) WLS, (B) MCC (C) PTIN, and 
(D) PMF. 1) Total area; 2) Sample.
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of 5%. Therefore, the differences between the DTMs 
are considered punctual.

Difference maps were generated by subtracting 
the different DTMs to highlight the similarities 
and divergences between the algorithms (Figure 5). 
The DTM generated by the PMF is the most distinct 
from the others, mainly in relation to those generated 
by the WLS and MCC algorithms. The differences in 
elevation between the DTMs generated by the PMF 
and the other algorithms are usually positive; this 
means that the PMF tended to underestimate the 
DTM elevation values. In contrast, the MCC algorithm 
presented results very similar to those of the WLS and 
PTIN algorithms, and the WLS presented only small 
differences compared with the PTIN. It is also possible 
to highlight that most differences between WLS and 

MCC are negative. In other words, the MCC algorithm 
presents higher elevation values, contrasting with the 
results generated by the PMF.

Regarding the land use and land cover classes, 
greater difference was observed in the DTMs from 
class I (Shrubland), followed by classes V (Grassland), 
VI (Bare Soil), and III (Open canopy forest). We observed 
that the differences in DTMs vary between classes 
and algorithms, according to the results of RMSE and 
MAE (Table 1).

The Shrubland area (Class I) presented the 
highest RMSE values, with 0.37m, 0.36m, and 0.35m, 
respectively, for the comparison of PMF in relation to 
MCC, WLS, and PTIN. In general, the PMF algorithm 
presented the greatest differences in relation to the 
others, both for RMSE (m and %) and MAE, and among 

Figure 4. DTMs generated using the algorithms WLS (A), MCC (B), PMF (C), and PTIN (D). The topographic 
profiles were drawn at x=5189600 m and y=488000 m.
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these differences, the smallest one occurred in relation 
to the PTIN algorithm.

The PMF algorithm tends to underestimate terrain 
elevation, as observed for the relation with the other 
DMTs. In addition, some authors have observed that 
one of the main problems of the PMF algorithm is 
that it assumes a constant slope on the area (Hui et al., 
2016), a very difficult condition to be observed in forest 
environments, whether native forest or commercial 
plantations. The same assumption is valid for the study 
area, which presents flat regions in the center and abrupt 
inclinations in the outermost areas. We observed that 

the largest errors occurred in the areas with the highest 
slopes, regardless of the land use and land cover class.

The lowest absolute RMSE values were observed 
in the bare soil, in the comparison between WLS and 
MCC with RMSE of 0.10 m, and between MCC and 
PTIN with 0.12 m, respectively. In general, considering 
both the grassland and bare soil classes, the differences 
between the DTMs from the MCC, PTIN and WLS 
algorithms were small, but they were greater when 
compared with the DTM from the PMF algorithm. As for 
the MAE values, the only comparison that presented 
positive values was between WLS and MCC for the 

Figure 5. Differences in elevation for the DTMs in classes of land cover.
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Table 1. RMSE and MAE of pared DTMs across land use and land cover types.

DTMs CLASS N
RMSE MAE Slope (°) – DTM (WLS)

m % (%) Mean SD
WLS vs. MCC

I – Shrubland 786

0.21 0.07 0.01

23° 7’ 8° 23’

WLS vs. PTIN 0.23 0.07 -0.01
WLS vs. PMF 0.36 0.11 -0.05
MCC vs. PTIN 0.15 0.05 -0.01
MCC vs. PMF 0.37 0.12 -0.06
PTIN vs. PMF 0.35 0.11 -0.04
WLS vs. MCC

II – Closed-canopy 
forest 5924

0.27 0.08 0.01

13° 14’ 7° 19’

WLS vs. PTIN 0.17 0.05 -0.01
WLS vs. PMF 0.23 0.07 -0.02
MCC vs. PTIN 0.26 0.08 -0.02
MCC vs. PMF 0.30 0.09 -0.02
PTIN vs. PMF 0.20 0.06 -0.01
WLS vs. MCC

III – Open-canopy 
forest 3249

0.19 0.05 0.00

9° 24’ 5° 33’

WLS vs. PTIN 0.16 0.05 -0.01
WLS vs. PMF 0.22 0.06 -0.03
MCC vs. PTIN 0.18 0.05 -0.01
MCC vs. PMF 0.25 0.07 -0.03
PTIN vs. PMF 0.18 0.05 -0.02
WLS vs. MCC

IV – Intermediate 
canopy forest 6508

0.19 0.05 0.00

12° 07’ 7° 27’

WLS vs. PTIN 0.16 0.05 -0.01
WLS vs. PMF 0.22 0.06 -0.03
MCC vs. PTIN 0.18 0.05 -0.01
MCC vs. PMF 0.25 0.07 -0.03
PTIN vs. PMF 0.18 0.05 -0.02
WLS vs. MCC

V - Grassland 613

0.13 0.04 0.00

16° 17’ 8° 06’

WLS vs. PTIN 0.16 0.05 -0.02
WLS vs. PMF 0.27 0.09 -0.06
MCC vs. PTIN 0.13 0.04 -0.02
MCC vs. PMF 0.28 0.09 -0.06
PTIN vs. PMF 0.25 0.08 -0.04
WLS vs. MCC

VI – Bare soil 3568

0.10 0.03 0.00

11° 23’ 6° 10’

WLS vs. PTIN 0.15 0.05 -0.02
WLS vs. PMF 0.25 0.08 -0.06
MCC vs. PTIN 0.12 0.04 -0.02
MCC vs. PMF 0.26 0.08 -0.06
PTIN vs. PMF 0.21 0.06 -0.04

N = number of observations; RMSE = Root mean square error; MAE = Mean absolute error; SD = Standard deviation.

first two land use and land cover classes, whereas for 
the other classes, the values were null. The differences 
between the other algorithms for all other classes were 
negative in all cases, which means that MCC and WLS 
estimate elevation values slightly higher than the other 
algorithms. Although there are variations between the 
DTMs, the results are very similar, with a maximum 
0.06% MAE and; therefore, the algorithms present 
only punctual differences.

4. CONCLUSIONS AND 
RECOMMENDATIONS

The four ground filtering algorithms (WLS, MCH, 
PMF, and PTIN) were able to properly eliminate objects 
above the ground in a forest environment, as the terrain 
models presented very small divergences. Considering 
that the forest sector requires updated topography data 
for planning and management purposes, we conclude 
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that the selected open-source algorithms, such as WLS 
and MCC, can be used to process airborne LiDAR data 
and provide accurate DTMs.

Despite the similarity between the four selected 
ground filtering algorithms, the PMF algorithm 
generated the most different results. This was due to 
underestimation of the DTM elevation, particularly 
in open canopy forest areas. The PMF algorithm tends 
to eliminate ground points excessively and, therefore, 
generates less consistent DTMs. In this study, regardless 
of the land use and land cover class, the greatest 
differences between the DTMs occurred in the areas 
with the highest slopes.

We suggest evaluating the potential of these 
algorithms in tropical native forest environments. 
Usually, the remaining forests are in areas with complex 
topography. We also suggest evaluation of the impact 
of algorithm selection in the estimation of individual 
tree heights for forest inventory purposes.
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