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ABSTRACT
According to previous studies involving biometric variables modeling using remote sensing (RS), 
data did not consider the effects of anthropogenic disturbance as relevant factor. The main objective 
of this study was to model aboveground biomass (AGB) and total wood volume (TWV) of Brazilian 
Savanna biome using vegetation indices (VI) from LANDSAT 5 TM. Multiple linear regression 
(MLR) and random forest (RF) algorithm were applied across 641 field plots of cerrado sensu 
stricto of the state of Minas Gerais, Brazil, comparing two models: non-stratified, and stratified 
according to plot’s anthropization degree. AGB and TWV obtained from non-anthropized plots 
presented linear relation with VIs (R2 = 0.82 and 0.74, respectively) and, on the other hand, 
presented nonlinear relation when plots were affected by anthropogenic disturbances or were not 
stratified. This finding helps improving estimates by stratifying plots into their anthropization 
degree, mainly in the Brazilian Savanna biome undergoing anthropogenic disturbances.
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biomass.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-1015-4973


2/13 Silveira EMO, Acerbi Júnior FW, Silva ST, Mello JM Floresta e Ambiente 2019; 26(3): e20180338

1. INTRODUCTION

The Savanna biome represents a large area in Brazil, 
occupying the central part of the country, totaling 
about 204 million ha (Sano et al., 2010). In the state 
of Minas Gerais, savanna is a significant portion of 
the territory, with estimated area of 33 million ha 
(Scolforo et al., 2015). This biome is among the most 
endangered eco-regions in the world due to high 
conversion rates (Bueno  et  al., 2019; Silveira  et  al., 
2019a) and few protected areas (Hoekstra et al., 2005). 
Since the 1970s, this biome has suffered large losses 
of its natural vegetation due to agricultural expansion 
(Silva et al., 2006). Currently, the deforestation rate 
is about 1.6% per year (Arantes et al., 2016), leading 
to large-scale conversion of native vegetation into 
agricultural areas, which has already affected more 
than 40% of the original area of this biome (Sano et al., 
2010). In addition to anthropogenic disturbance, as the 
state has large dimensions, the physiognomy grows in 
places with different climatic and soil conditions. These 
two sources of variation make it even more difficult 
to accurately evaluate biometric data.

Several studies have been carried out mainly aimed 
at knowing the structural formation of this biome, 
with a qualitative view, in which species are identified, 
their forms of propagation and cultivation, multiple 
and alternative uses for various fruit, medicinal and 
energy species (Aguiar & Monteiro, 2005; Cabral et al., 
2015; Veenendaal et al., 2015). Quantitative studies 
have also been developed in order to identify growth 
and productivity parameters in the various regions 
of occurrence of this vegetation (Rufini et al., 2010; 
Reis  et  al., 2015; Silveira  et  al., 2019b). Volumetric 
reviews of timber potential, biomass and carbon stocks 
are being held either by environmental agencies and 
academic institutions, while the private sector carries 
out quantitative surveys designed to support plans for 
sustainable management and operations for exploration 
of timber resources (Alvarenga et al., 2012; Morais et al., 
1995; Silveira et al., 2019b). Estimating wood volume 
and biomass accurately and establishing suitable 
models can provide a scientific basis for determining 
reasonable stocking capacity (Yang et al., 2018), with 
implications to regional and global reports on biomass, 
carbon stocks, and their changes.

There are several approaches to estimate biometric 
variables in large areas using remote sensing (RS) data 

(Lu et al., 2016). In general, these data are empirically 
linked to measurements of field plots, ranging from 
simple linear regression (Scolforo et al., 2015) to complex 
machine learning algorithms (MLA) (Gleason & Im, 
2012; Wang et al., 2016). LANDSAT5 TM and 8 OLI 
images are the most medium spatial-resolution data 
commonly used due to the large historical series available 
with 30-meter resolution (Wulder et al., 2008; Zhu & 
Liu, 2015; Aslan et al., 2016). The normalized difference 
vegetation index (NDVI) is one of the most often used 
in applications relevant to the analysis of vegetation 
biophysical parameters. It has been used in various 
applications such as estimation of deforestation trends 
(Silveira et al., 2018a, b), phenological development 
monitoring (Verbesselt et al., 2010), vegetation re-growth 
assessment after fire (White et al., 2017), and estimation 
of biometric variables (Zhu & Liu, 2015). In addition 
to NDVI, other vegetation indices (VIs) have been 
used, including but not limited to the soil-adjusted 
vegetation index (SAVI) (Huete, 1988), the enhanced 
vegetation index (EVI) (Garroutte et al., 2016), and 
the LAI (leaf area index) (González-Sanpedro et al., 
2008). However, most of previous studies involved 
statistical models based on a single vegetation index, 
and each of them has limitations and uncertainties 
(Zhao  et  al., 2014). The effects of anthropogenic 
disturbance that impacts the correlation between 
biometric variables and spectral indices were also not 
studied. Anthropogenic disturbance can change the 
stand successional pattern, subsequent diversity and 
forest biomass (Pawar et al., 2014).

Thus, the main objective of this study was to 
analyse how anthropogenic disturbances affect the 
relationship between biometric variables and remote 
sensing vegetation indices. Specifically, NDVI, EVI, 
SAVI and LAI derived from LANDSAT 5 (thematic 
mapper) TM were used as independent variables to 
apply a multiple linear regression (MLR) and random 
forest (RF) algorithm to estimate aboveground biomass 
(AGB) and total wood volume (TWV). Two models 
were generated: (1) non-stratified model, considering 
all plots, and (2) stratified model, classifying plots 
according to their anthropization degree. The research 
question that motivated this study was: (1) Do field 
stratification of plots according to their anthropization 
degree improve the relationship between biometric 
variables and vegetation indices derived from LANDSAT5 
TM images?
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2. MATERIAL AND METHODS

2.1. Field data and study area

The state of Minas Gerais (MG) is located in 
south-eastern Brazil (Figure 1a), and has Savanna, Atlantic 
Forest and Semi-arid woodland biomes (Figure 1b). 
The Brazilian Savanna is a heterogeneous biome, comprising 
vegetation types ranging from grasslands to woodlands 
(Ribeiro & Ferraz, 2013; Silveira et al., 2017, 2018c), 
located between latitudes -14.25° and -21.50° 51.52 S 
and longitudes -41.80° and -50.91° W. The climate is 
seasonal Tropical, presenting dry winter and rainy 
summer (AW by Koppen classification). The average 
annual temperature is between 22 and 23 C. The average 
monthly rainfall shows a clear seasonality, occurring 
more concentrated between October and March, 
with annual average between 1.200 and 1.800 mm 
(Scolforo et al., 2015).

Field measurements of 641 plots (10 × 100 meters), 
from 49 forest remnants identified as cerrado sensu 
stricto vegetation type were obtained, which demonstrate 
well-defined arboreal and shrub-herbaceous layers 
with arboreal coverage varying from 10% to 60% 

(Silveira  et  al., 2017), belonging to the “Forest 
Inventory of Minas Gerais” project conducted by the 
Federal University of Lavras – UFLA from 2006 to 
2008 (Figure  1b). This project generated abundant 
information regarding qualitative and quantitative 
analysis of forest remnants. The map provided the 
delimitation and spatial distribution, and the forest 
inventory provided quantitative data of vegetation 
types present in Savanna, Atlantic Forest and Semi-arid 
woodland biomes in the state.

During field surveys, the diameter at breast 
height (DBH, 1.3 m) and total height of all trees with 
minimum DBH of 5 cm were measured. Data used in 
this study were total wood volume and AGB of plots 
as dependent variables. Total wood volume for all the 
trees was estimated by applying Equation 1 (Rufini et al., 
2010) for cerrado sensu stricto vegetation type, with R2 
(determination coefficient) = 98.64% and Sxy (residual 
standard error) = 0.12 m3. The trees used to determine 
AGB were all from destructive sampling campaigns 
as described by Scolforo et al. (2015).

( ) ( ). . *ln . *=− + += 9 7189673246 2 4207715832 DBH 0 4608810281 ln HV e  (1)

Figure 1. (a) Geographic location of MG in Brazil; (b) Biomes and plots (forest remnants) spatially distributed in 
the state.
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where: V is the volume (m3); e is the base of the natural 
logarithm; ln is the natural logarithm; DBH is the 
diameter measured at 1.3 meters above the ground 
(cm); H is the total tree height (m).

Field plots were stratified into two classes according to 
their anthropization degree: (1) non-anthropized – 218 plots 
(Figure 2b) and (2) anthropized – 423 plots (Figure 2c). 
The criteria for this classification are described in Ribeiro 
& Ferraz (2013). The methodology consists in applying 
data collected in quantitative forest inventories (number 
of individuals, basal area, quadratic mean diameter, ratio 
between number of individuals in the first diameter 
class - 5 to 10 cm and total number of individuals), in 
addition to visual analysis. The methodology is also 
described in Scolforo et al. (2008).

2.2. Remote sensing data

Thirteen LANDSAT 5 TM satellite scenes (Figure 2a) 
from the same collection date of forest inventory data 
were used (from 2006 to 2008), acquired by the US 
government institute that supports research involving 
geological surveys and Earth observation, the United 

States Geological Survey for Earth Observation and 
Science (USGS\EROS). Images were acquired in the 
CDR processing level (Landsat Surface Reflectance 
Climate Data Record), with the necessary geometric 
corrections and reflectance values   at ground level. 
One image by scene completely free of clouds was 
selected (Table 1).

From images, NDVI, EVI, SAVI and LAI spectral 
indices were generated. The NDVI index (Rouse et al., 
1973) expresses the ratio between bands that capture 
electromagnetic wavelength in the red and near infrared 
frequencies (Equation 2). This equation generates an 
index that varies from -1 to 1.

−
=

+
NIR REDNDVI
NIR RED

ρ ρ
ρ ρ

  (2)

where: NDVI is the Normalized Difference Vegetation 
Index; NIR is the reflectance values   for the near infrared 
wavelength; RED is the reflectance values   corresponding 
to the red wavelength.

In order to improve the received vegetation 
signal, the Enhanced Vegetation Index (EVI) was 

Figure 2. (a) LANDSAT 5 TM scenes covering the study area, used to generate remote sensing vegetation indices; 
(b) Detail of plots located in a forest remnant classified as non-anthropized; (c) Detail of plots located in a forest 
remnant classified as anthropized.
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used, whose purpose was to reduce atmosphere 
influences and improve sensitivity at high biomass 
density regions (Nakaji et al., 2008). Its calculation is 
shown in Equation 3. The coefficients adopted by the 
MODIS program algorithm are: L = 1, C1 = 6, C2 = 7.5 
and L = 2.5.

( )
( )

−
=

+ + −1 2

NIR RED
EVI G

L NIR C RED C BLUE
ρ ρ

ρ
  (3)

where: G is the gain factor; NIR is the reflectance of 
the near infrared spectral band; RED is the reflectance 
of the red spectral band; L is the adjustment factor 
for components below the canopy; C1 and C2 are 
adjustment coefficients of aerosol effects of the 
atmosphere (dust, smoke, air pollution particles); 
BLUE refers to reflectance in the blue band, which 
shows the influence of aerosols.

SAVI (Soil Adjusted Vegetation Index) was proposed 
by Huete (1988), aiming to improve the vegetation 
response in relation to soil interference, especially in 
areas of low vegetation cover. This index is obtained 
by Equation 4. The L value varies according to soil 
reflectance and vegetation density. In areas with low 
vegetation density, it is recommended to adopt L=1, 
for intermediate vegetation density, L = 0.5 and for 
high vegetation density, L = 0.25. Since our analysis 
is focused on cerrado sensu stricto vegetation type, 
L = 0.5 was adopted.

( ) ( )
( )

*− +
=

+ +
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SAVI
NIR RED 1

ρ ρ
ρ ρ

  (4)

where: NIR is the reflectance of the near infrared spectral 
band; RED is the reflectance of the red spectral band; 
L is the soil adjustment constant.

Based on values   obtained for SAVI, the Leaf 
Area Index (LAI) was calculated, which expresses 
the proportionality between m2 of leaf per m2 of soil 

(González-Sanpedro  et  al., 2008), using empirical 
Equation 5.

( )
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.
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0 91
  (5)

where: LAI is the leaf area index; The numerical values 
of 0.69 – 0.59 – 0.91 are constant; SAVI is the soil 
adjusted vegetation index.

2.3. Multiple linear regression and random 
forest algorithm

TWV (m3/ha) and AGB (t/ha) from sample plots 
were used as dependent variable and the NDVI, 
EVI, SAVI and LAI vegetation indices were used as 
independent variables. MLR and RF implemented in 
the R software (R Core Team, 2014) were applied and 
the stratified method and non-stratified methods were 
tested. Among parametric methods, linear regression 
is the simplest one. It uses ordinary least squares to 
estimate parameters of the linear relationship between 
predictor variables and field measured variables 
(Equation 6). This method is often challenged when 
there is nonlinear relationship (Zhu & Liu, 2015). 
The Pearson´s correlation was also calculated.

= + +0 1 1 ii B B X E   (6)

where: iy  are the dependent variables (TWV-m3/ha; 
AGB-t/ha); iX  are the independent variables (NDVI; EVI; 
SAVI; LAI); 0B  and 1B  are the parameters to be estimated 
by regression.

The RF algorithm, initially proposed by Breiman 
(2001) is an ensemble method that generates a set 
of individually trained decision trees and combines 
their results. RF is a robust non-parametric classifier 
and has the ability to accommodate many predictor 
variables (DeVries et al., 2016). The advantages of RFs 

Table 1. LANDSAT scenes and acquisition dates used to calculate spectral indices.

Path/Row Acquisition date Path/Row Acquisition date
217/71 12 April 2007 219/71 14 September 2006
217/72 01 July 2007 219/72 14 September 2006
218/71 21 July 2006 219/73 14 September 2006
218/72 21 July 2006 220/71 17 June 2006
218/73 21 July 2006 220/72 05 September 2006
218/74 21 July 2006 220/73 05 September 2006
219/70 28 July 2006
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include excellent accuracy, efficient implementation 
on large datasets, and a structure that enables the 
future use of pre-generated trees. The number of 
decision trees (Ntree) was set to 1,000. About 70% 
of data were randomly selected and used to fit the 
models. The remaining 30% was used to test the model 
performance. To compare the performance between 
stratified versus the non-stratified method modelling 
by MLR and RF, the determination coefficient was 
computed (R2, in %), which indicates the part of the 
observed variability that is explained by the model; 
the root-mean-square error (RMSE), which measures 
the average difference between values predicted by the 
model and those observed; the mean absolute error 
(MAE), which indicates an average bias of model over 
or underestimation (Vieilledent et al., 2016).

3. RESULTS

3.1. Relationship between biometric variables 
and vegetation indices

Table 2 shows the Pearson´s correlation coefficients 
(R) between AGB and TWV with the NDVI, EVI, 
SAVI and LAI remote sensing vegetation indices 
derived from LANDSAT 5 TM. Values are positively 
correlated to AGB and TWV. Weak correlations in 
non-stratified and stratified methods in anthropized 
areas were found. This result clearly shows how 
anthropogenic disturbances impact the correlation 
between biometric variables and spectral indices. This 
is an indication that the disturbance degree in a biome 
such as the Savanna, specifically in cerrado sensu stricto 

vegetation type, affects the correlation between remote 
sensing vegetation indices with aboveground biomass 
(Figure 3) and total wood volume (Figure 4), leading 
to problems in the modelling process. The  highest 
correlation values were found using NDVI and the 
stratified non-anthropized class, reaching R = 0.81 
and 0.82 for AGB and TWV, respectively. The lowest 
R values were obtained using the stratified anthropized 
class, mainly with EVI vegetation index, reaching 0.12 
of correlation.

The low correlation values found using non-stratified 
and stratified anthropized classes do not mean that 
variables are not correlated, but may mean that the 
relationship is not linear. Figure 3 and Figure 4 show 
the scatterplots between AGB and TWV and the 
individual’s remote sensing vegetation indices, helping 
the visualization of its relationship.

Figure 5 shows scatterplots of the multiple linear 
regression (Figure 5a) and random forest algorithm 
(Figure  5b) for both AGB and TWV, considering 
the non-stratified method. Comparing the results, it 
was observed that using all plots together, both MLR 
and RF algorithm did not present good regression 
performances, with low R2 values. For both biometric 
variables, RF presented better results compared to MLR, 
decreasing MAE and RMSE, and increasing R2 values. 
These results indicate that using the non-stratified 
method, the relationship between biometric variables 
and vegetation indices are better explained using 
nonlinear algorithms, such as random forest regression.

Figure 6 shows scatterplots of the multiple linear 
regression (Figure 6a) and random forest algorithm 

Table 2. Correlation coefficients (R) values   between biometric variables and spectral indices extracted from the 
LANDSAT 5 TM images.

Method Vegetation indices R - AGB (t/ha) R - TWV (m3/ha)

Non-stratified

NDVI 0.30 0.31
EVI 0.16 0.17

SAVI 0.38 0.35
LAI 0.35 0.34

Stratified: Non-anthropized

NDVI 0.81 0.82
EVI 0.76 0.78

SAVI 0.75 0.77
LAI 0.38 0.37

Stratified: Anthropized

NDVI 0.26 0.25
EVI 0.12 0.12

SAVI 0.42 0.40
LAI 0.35 0.34
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Figure 3. Scatterplots between aboveground biomass (AGB) and vegetation indices: (a) NDVI; (b) EVI; (c) SAVI; 
and (d) LAI. A 1:1 line (dashed) is provided for reference.

Figure 4. Scatterplots between total wood volume (TWV) and vegetation indices: (a) NDVI; (b) EVI; (c) SAVI; and 
(d) LAI. A 1:1 line (dashed) is provided for reference.



8/13 Silveira EMO, Acerbi Júnior FW, Silva ST, Mello JM Floresta e Ambiente 2019; 26(3): e20180338

Figure 5. Non-stratified plots. Measured biometric variables vs. estimated by (a) multiple linear regression method; 
and (b) random forest algorithm. A 1:1 line (dashed) is provided for reference.

Figure 6. Anthropized plots. Measured biometric variables vs. estimated by (a) multiple linear regression method; 
and (b) random forest algorithm. A 1:1 line (dashed) is provided for reference.
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(Figure  6b) for both AGB and TWV considering 
anthropized stratified plots. Compared with MLR, 
both AGB and TWV presented better results 
using the RF regression model. R2 values ranged 
from 0.20 and 0.18 to 0.4, respectively. MAE and 
RMSE values also decreased.

Figure 7 shows scatterplots of the multiple linear 
regression (Figure 7a) and random forest algorithm 
(Figure  7b) for both AGB and TWV considering 
non-anthropized stratified plots. In terms of R2, MLR 
can explain more the AGB and TWV variance than 
the random forest algorithm, indicating that MLR is 
effective to improve the relationship between biometric 

variables and vegetation indices when the area of plots 
is non-anthropized.

Table 3 summarizes the statistics computed using 
MRL and RF algorithm considering non-stratified, 
anthropized and non-anthropized plots. Specifically, 
both AGB and TWV, considering MLR, MAE and 
RMSE decreased and R2 increased from anthropized 
and non-stratified plots to non-anthropized plots. 
In relation to RF, the lowest MAE and RMSE statistics 
were found using non-anthropized plots, and the highest 
were found using non-stratified plots. These results 
show how anthropogenic disturbances impact the 
relationship between biometric variables and remote 
sensing vegetation indices.

Figure 7. Non-anthropized plots. Measured biometric variables vs. estimated by (a) multiple linear regression 
method; and (b) random forest algorithm. A 1:1 line (dashed) is provided for reference.

Table 3. Evaluation methods using validation sets.

Method Statistic
Non-stratified Anthropized Non-anthropized

AGB TWV AGB TWV AGB TWV

MLR
MAE (%) 40.91 42.31 44.79 45.46 20.11 19.93

RMSE 17.94 30.28 18.98 32.06 14.20 22.21
R2 0.33 0.29 0.20 0.18 0.85 0.72

RF
MAE (%) 36.13 37.09 35.90 35.74 22.15 24.75

RMSE 16.94 28.70 16.48 27.38 18.23 33.66
R2 0.41 0.36 0.40 0.40 0.51 0.36
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4. DISCUSSION

NDVI, EVI, SAVI and LAI remote sensing 
vegetation indices are adequate to model TWV and 
AGB using linear regression in non-anthropized 
cerrado sensu stricto vegetation. Using random 
forest (RF) regression algorithm to estimate AGB 
and TWV had the advantage of estimating any 
complex non-linear relationship. Thus, acceptable R2 
values were found (0.4), modelling these biometric 
variables with vegetation indices through plots under 
anthropogenic disturbances or when they are not 
stratified. This value is low; however, according to the 
high area heterogeneity e and anthropic impacts, it 
is in accordance with previous studies carried out in 
the Brazilian Savanna biome (Alvarenga et al., 2012; 
Reis et al., 2015; Scolforo et al., 2015, 2016).

Prabhakara et al. (2015) evaluated the relationship 
between biomass and remote sensing indices across 
six winter cover crop fields in Maryland, United 
States. They reported that spectral indices are more 
sensitive to green living vegetation, whereas field 
sampled biomass included both living and dead plant 
material. Therefore, the index performance for all 
sampling dates was poor (R2about 0.26). Reis et al. 
(2018) analysed the correlation between TWV from 
eucalyptus plantation and vegetation indices derived 
from LANDSAT 5 TM. In their analysis, NDVI and 
SAVI presented the highest correlation, reaching r = 0.49 
and r = 0.47, respectively, indicating thatthe spatial 
diversity of forest canopies makes the relationship 
between forest parameters and remote sensing data 
a major challenge.

R2, as well as MAE and RMSE, are considered 
acceptable due to the wide variation found for the 
target variable in this region (see Table 3). This wide 
variation reflects the heterogeneity of the natural 
conditions of cerrado sensu stricto remnants in 
the state of Minas Gerais, which directly impacts 
biometric variables (Scolforo et al., 2015). In addition, 
it is important to note that the total wood volume 
(TWV) and aboveground biomass (AGB) values do 
not only respond to the anthropogenic disturbances 
considered, but also to environmental variables, such 
as chemical and physical soil characteristics (Berner 
& Law, 2016), as well as the structural conditions of 

remnants, such as different vegetation successional 
stages with different age structures (Schwieder et al., 
2016). There are forest fragments in different sites, 
different successional stages, and trees with different 
diameters and heights, leading to an increase in the 
vegetation variability (Scolforo et al., 2015).

In general, process-based models assume 
homogeneous stands and lack the ability to provide data 
on spatial variability in forest biomass (Lu et al., 2016). 
Forest disturbance can be natural (e.g., tornados) or 
anthropogenic (e.g., deforestation and land conversion, 
fire) (Frolking et al., 2009). In a given location, the 
reflectance of images and therefore vegetation indices, 
are expected to change due to disturbance or successional 
processes (Hermosilla et al., 2018).

For example, in forest plots not affected by 
disturbance, NDVI is around 0.65 in areas with high 
tree density. Medium vegetation cover sites have NDVI 
around 0.49 and low vegetation cover sites have NDVI 
around 0.17 (Garrigues et al., 2006). In our study, it 
was concluded that plots with NDVI values lower than 
0.49 presented mean AGB values around 19 t/ha, and 
plots with NDVI values between 0.49 and 0.65 showed 
mean AGB values around 30 t/ha and finally, plots with 
NDVI values higher than 0.65 exhibited mean AGB 
values around 62 t/ha. This pattern indicates a clear 
positive liner relationship (R = 0.81) between NDVI 
vegetation index and AGB inside plots not affected by 
anthropogenic disturbances (see Figure 3a).

On the other hand, when plots are under 
anthropogenic disturbances, the linear relationship 
between reflectance values and biometric variables 
is poor. Vegetation indices have increased spatial 
variability due to the mosaic of exposed soil with low 
vegetation index values combined with trees with high 
vegetation index values (see Figure 2c). For example, 
harvest activities result in a mosaic of post-disturbance 
land cover types mainly composed of exposed/barren 
land, herbs and shrubs, immediately following the 
change event. Plots undergoing disturbances were 
analyzed and plots with 10.85 t/ha were found 
(low AGB); however, presenting mean NDVI values 
equal to 0.72. This pattern can be explained by the use 
of images prior to disturbance events, due to gaps in 
image acquisition originating from cloud cover and 
LANDSAT temporal resolution (16 days). This pattern 
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can explain the poor performance of models from 
anthropic plots compared to non-anthropized plots, 
leading to a weak relationship between biometric 
variables and vegetation indices.

5. CONCLUSIONS

Aiming at investigating how anthropogenic 
disturbances affect the relationship between total wood 
volume (TWV) and aboveground biomass (AGB) with 
remote sensing vegetation indices, these biometric 
variables were modelled stratifying field plots according 
to their anthropization degree using multiple linear 
regression and random forest algorithm.

By performing the stratification method, the results 
revealed that TWV and AGB from non-anthropized 
plots are better explained using remote sensing 
vegetation indices performing multiple linear regression 
instead of nonlinear regression. On the contrary, these 
biometric variables presented nonlinear relationship 
with vegetation indices when plots are affected by 
anthropogenic disturbances or are not stratified, 
indicating that anthropic activity directly affects the 
relationship between biometric variables and NDVI, 
EVI, SAVI and LAI vegetation indices derived from 
LANDSAT 5 TM.

This finding helps improving the modelling 
approaches that use remote sensing data to estimate 
biometric variables in highly heterogeneous areas, 
affected by anthropogenic disturbances such as the 
Brazilian Savanna biome, improving estimates by 
stratifying field plots into their anthropization degree.
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