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ABSTRACT
The objective of this study was to obtain regression equations and artificial neural networks 
(ANNs) for prediction and prognosis of the yield of Pinus caribaea var. caribaea Barrett & 
Golfari. The data used for modeling comes from measuring the variables diameter at breast 
height (DBH) and total height (Ht) in 550 temporary plots and 14 circular permanent plots with 
500 m2 in Pinus caribaea var. caribaea plantations, aged between 3 and 41 years old. In growth 
prediction, the results indicated Schumacher model as the best fit to the data. On prognosis, the 
modified Buckman system was better than Clutter’s. ANNs presented a similar performance to 
the Buckman model in volume prognosis, however these were superior for basal area prognosis.
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1. INTRODUCTION AND OBJECTIVES

Mathematical models are not new in the forest 
area and are one of the most important approaches in 
the study of forest dynamics. In these studies, present 
estimates (predictions) and future estimates (prognosis) 
made with modeling techniques, both at the tree and 
stand level, are essential steps to enable forestry activity 
planning (Prodan et al., 1997).

Mathematical modeling refers to the development 
or adjustment of mathematical expressions that describe 
the behavior of a variable of interest. Regression analysis, 
a statistical technique whose name is attributed to 
the British anthropologist Francis Galton (Draper & 
Smith, 1998), is the most used technique in empirical 
modeling research, especially when the objective is 
to describe an existing but hidden relation between a 
set of independent variables and a dependent variable 
(Pardoe, 2012).

Equations, the main results of the regression 
analysis, help forest researchers and managers to 
forecast future forest yields to select better management 
options, appropriate silviculture alternatives or to plan 
forest harvest frequencies and sequences (Burkhart & 
Tomé, 2012).

When discussing the difference between 
prediction and prognosis models, it is worth noting 
that prognoses are performed by regression models 
in the form of equation systems that estimate the 
parameters of the function for the projection of 
production for future ages (Castro et al., 2013) 
and prediction models can be defined as functions 
that simply describe the change in the size of an 
individual (tree) or population (population) over 
time (age) (Burkhart & Tomé, 2012).

From the perspective of the input variable 
components for the models, Binoti et al. (2015) assert 
that prediction is carried out by models that have 
age as an independent variable, while prognosis is 
performed by models in which future production is 
projected as a function of current production among 
other variables. The errors associated with these 
prognosis models grow over time, and considering 
the long horizons of the planning of forest productive 
processes, making precise forecasts has become the 
main challenge of forest yield models.

In the last decades, the need for more accurate 
estimates has led to techniques such as artificial 
neural networks (ANNs) becoming popular for 
forest measurement. Due to their effectiveness in 
understanding complex systems, these modeling 
techniques are used as alternatives to the adjustment 
of traditional nonlinear regression models (Özçelik 
et al., 2017). The ANNs can be defined as mathematical 
models that have the functioning of the human brain 
with its biological neural networks as a metaphor 
(Valença, 2010).

Forest plantation growth and yield modeling using 
regression analysis were approached in numerous 
researches, such as the outstanding studies by Schumacher 
(1939), Buckman (1962) and Clutter (1963). In applied 
regression analysis, we highlight authors such as Draper 
& Smith (1998) and Pardoe (2012) whose studies were 
complementary to specific forest literature. Studies of 
Ashraf et al. (2013), Castro et al. (2013), Özçelik et al. 
(2014), are among studies that applied the techniques 
of ANNs for the same purpose.

Given the above, this study sought to fit regression 
models and train ANNs for the prediction and prognosis 
of Pinus caribaea var. caribaea growth and yield at 
Macurije forest company, Pinar del Río, Cuba.

2. MATERIALS AND METHODS

2.1. Geographical location of the study area

This study was carried out in plantations of Pinus 
caribaea var. caribaea of a company called Macurije 
located between the coordinates 22º06’ to 22º42’ 
latitude North and 83º48’ to 84º23’ longitude west, in 
the most western region of the province of Pinar del 
Río, Cuba (Figure 1).

2.2. Data sources and analysis of sample 
sufficiency

The database used consisted of 550 temporary 
plots and 14 circular permanent plots of 500 m² in 
plantations of Pinus caribaea var. caribaea with ages 
ranging from 3 to 41 years old. Temporary plots were 
collected following a random sampling throughout 
the company and the permanent plots established and 
monitored until 2006, distributed in the company’s 
two silvicultural units (Guane and Mantua), and six 
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consecutive measurements were made. In the plots, 
variables age (A), diameter at breast height (DBH) 
and total height (Ht) were measured, and the yields 
represented by the variables basal area (G) and 
volume (V) were calculated.

Sample sufficiency analysis was performed using 
sampling error, based on the random sampling procedure 
in an infinite population, with an acceptable error of 
10% and a 95% probability level.

Figure 1. Geographic location of Macurije forest company, Pinar del Río, Cuba.

2.3. Growth and yield models fitted for 
plantations of Pinus caribaea var. caribaea

The selected growth and yield models (Table 1) 
were fitted for complete settlement and the one with 
the best data adherence was adjusted by site class.

For yield prognosis, the models of Clutter (1963) 
(Equations 1 and 2) and Buckman (1962) modified by 
Silva et al. (2006) (BMS) (Equations 3 and 4) were fitted.

Table 1. Growth models fitted for Pinus caribaea var. caribaea, Pinar del Río, Cuba.

№ Authors Mathematical expressions

1 Schumacher (1939) Y=e
β0+β1

1
A

⎛
⎝⎜

⎞
⎠⎟ + ε

2 Korf (1939) Y=β0e
−β1A

−β2 + ε

3 Chapman-Richards (Chapman, 1961; Richards, 1959) Y=β0 1− e−β1A( )β2 + ε

4 Logistic
(Verhulst, 1838)

Y= β0

1+β1e
−β2A

+ ε

5 Silva-Bailey (Silva, 1986) Y=β0e
β1β2

A

+ ε

Y : volume (m³/ha); A : Age (years); β0; β1; β2: parameters to be estimated; ɛ : random error.
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LnY2 =β0 +β1 / A2 +β2S+β3LnG2 + Lnε  (1)

LnG2 = LnG1
A1

A2

⎛
⎝⎜

⎞
⎠⎟
+α0 1− A1

A2

⎛
⎝⎜

⎞
⎠⎟
+

α1 1− A1

A2

⎛
⎝⎜

⎞
⎠⎟
S+ Lnε

 (2)

LnY2 =β0 +β1A2
−1 +β2S1 +β3LnG2 + Lnε  (3)

LndG2 =β4 +β5S1 +β6A2
−1 +β7G1 + ε  (4)

Where: Y2: expected volume at age A2; A1: current age; A2: future age;  
G1: current basal area; G2: future basal area; S1: site index;  
dG2 = increase in basal area from age A1 to age A2; βi , αi: parameters 
to be estimated; ɛ : random error ~ NID (0, σ2).

2.4. Artificial neural networks (ANNs) 
training for yield prediction and prognosis

There were 100 ANNs of multilayer perceptron 
(MLP) and radial basis function (RBF) type trained 
for both growth prediction and yield prognosis and 
the two-best retained for analysis. The variables and 
training algorithm used, as well as the activation 
functions tested, are found in Table 2.

The use of categorical variables is one of the main 
advantages of ANNs (Martins et al., 2016), dummy 
variables such as site classes (S) and forest production 
basic units (FPBUs) (Los Ocujes, Las Cañas, Sábalo, Río 
Mantua, Macurije) were included in the input set of the 
ANNs for both growth prediction and yield prognosis. The 
site classes considered were: SI = (10-13); SII = (13-16);  
SIII = (16-19); SIV = (19-22) and SV = (22-25).

The dataset was divided into three parts: 50% for 
training, 25% for test and 25% for cross-validation. The 
variables were normalized by linear transformation at 

Table 2. Characteristics of ANNs training for yield prediction and prognosis.

Dependent 
variable (output)

Independent 
variables (inputs) Types of ANN Algorithm Activation 

functions
Growth prediction V A, S, FPBU Multilayer 

perceptron 
(MLP)

Radial basis 
function

(RBF)

Broyden-
Fletcher-
Goldfarb-

Shanno
(BFGS)

Sine, identity, 
logistic,

exponential,
hyperbolic 

tangent
Yield prognosis

V2
A1, A2, S, G1, G2, V1, 

FPBU

G2 A1, A2, S, G1, FPBU

V: estimated volume; V1: current volume; V2: expected volume at age A2; S: site classes; FPBU: forest production basic units; A: age;  
A1: current age; A2: future age; G1: current basal area; G2: future basal area.

intervals [0, 1] or [-1, 1] depending on the activation 
function (Table 2).

2.5. Parameters estimation and models 
(regression and ANNs) selection criteria

The adjustments of the regression models as well as 
the ANNs training were performed with the application 
software Statistica 8.0 and SPSS 20.0. The linear models 
were fitted using the ordinary least squares method (OLS) 
and nonlinear models with the Levenberg-Marquardt, 
Gauss-Newton, or Newton-Raphson iterative methods. 
The prognosis models were fitted with the two-stage 
least squares method (2SLS) since they were exactly-
identified simultaneous equation systems.

The quality of the adjustments was evaluated 
using the following criteria: adjusted coefficient of 
determination (R²aj); standard error of estimation 
(Syx); root mean square error (RMSE) and residuals 
distribution analyses to verify possible estimation 
trends in the equations obtained. The assumptions of 
normality, homoscedasticity and serial autocorrelation 
of the residuals were also verified by the Kolmogorov-
Smirnov, White and Durbin-Watson tests, respectively.

In cases of violation of the first two assumptions, 
logarithmic transformation was applied. For models 
that underwent such a transformation, it was necessary 
to correct the logarithmic discrepancy with the Meyer 
correction factor as well as recalculate the residual 
standard error. The problem of the serial autocorrelation 
of residuals was addressed by the Cochrane-Orcutt 
method (Cochrane & Orcutt, 1949).

The validation of regression equations and trained 
ANNs was performed by comparing their estimates with 
the observed values. The univariate comparisons were 
performed using the statistical procedure proposed by 
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Leite & Oliveira (2002), testing the hypothesis H0: the 
observed values are equal to the values estimated by 
the regression equations or the ANNs. This procedure 
combines Graybill’s F (H0) test, the t-test for mean error 
( ) and the linear correlation (r) between the observed 
and estimated values.

In order to validate the models (regression equations 
and ANNs) adjusted for the simultaneous prognosis 
of production variables (basal area and volume), 
multivariate comparisons between the observed values 
and those estimated by the models were performed 
through the Hotelling T² test, using the procedure 
proposed by Balci and Sargent (1982).

3. RESULTS AND DISCUSSION

3.1. Estimates of the parameters of growth and 
yield models

The sampling error of 2.19%, corresponding to a 
pilot sample of 550 plots, was less than the allowable 
error of 10%, which indicated that this was enough to 
make the volume estimates with the required precision.

Table 3 shows the estimates of the parameters 
of each model. All equations resulting from the 
adjustments indicate rotation ages between 30 
and 35  years for the species in the company. The 
consonance of the rotation ages with those found 
by Barrero et al. (2011) indicates consistency of the 
parameter estimates obtained. These results and the 
high coefficients of determination and smaller standard 
error of the estimates (Table 3) favored the selection 
of the Schumacher and Korf equations as the most 

adequate for growth prediction in Pinus caribaea 
var. caribaea plantations at Macurije forest company.

The Kolmogorov-Smirnov tests indicated that 
only the residuals of the Schumacher, Logistic and 
Silva-Bailey models followed a normal distribution 
(p-value  >  0.05), a necessary condition for the 
results of the t and F parametric tests used to test 
the significance of the models and their respective 
parameters to be reliable.

The results of the Durbin-Watson test indicated 
that only the Schumacher model showed uncorrelated 
residuals. The Chapman-Richards, Silva-Bailey, and 
Logistic models presented negative serial auto-correlation 
and Korf ’s a positive auto-correlation.

The White test results (p-value > 0.05), confirmed 
by the residuals distributions (Figure 2), indicated 
that only the Schumacher and Korf models met 
the homoscedasticity assumption. The periodic or 
sinusoidal distribution of the logistic model residuals 
indicates its inadequacy for the data. This latter model 
and Chapman-Richards's model showed a tendency 
to overestimate smaller volumes.

Site index inclusion in the Schumacher (1939) 
model for volume prediction by productive capacity 
generated inconsistent results, opting then for its 
adjustment by site class. These adjustments allowed 
for relative control of the site variation source, with 
good adjustments despite the reduction of sample size 
per site (Table 4).

The assumption of normality was only observed 
in the residuals of the last three sites (p-value > 0.05), 
so logarithmic transformation was performed, which 
was effective in solving the problem. The results of the 

Table 3. Parameters estimates for growth prediction models fitted for P. caribaea plantations.

Models
Coefficients Raj

2

 (%)
Syx

 (%) Sig. F TRA

β̂0 β̂1 β̂2

Schumacher 6.92* −33.57* - 98.76 1.96 < 0.0001 33.57

Korf 1055.35* 31.02* 0.96* 98.80 1.94 < 0.0001 33.86

Chapman-Richards 579.05* 0.06* 3.37* 98.70 2.09 < 0.0001 33.02

Logistic 473.09* 25.43* 0.14* 98.20 3.57 < 0.0001 32.73

Silva-Bailey 513.24* −5.71* 0.92* 98.60 2.52 < 0.0001 32.21
* Significant estimate at 99% confidence by t-test; TRA: technical rotation age.
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Durbin-Watson test indicated the existence of positive 
serial autocorrelation in the residuals of all models. 
The application of the Cochrane & Orcutt (1949)  
procedure has eliminated the problem from the 
equations that presented good precision and biological 
consistency (Table 4). The results of the White test 
(p-value  >  0.05) indicated compliance with the 
assumption of homoscedasticity in all equations.

Figure 2. Residuals distribution of growth models fitted for P. caribaea var. caribaea.

The Schumacher equation indicated a yield of 
375.73 m³/ha, corresponding to an MAI (mean annual 
increment) of 11.05  m³/ha/year. In the estimates 
obtained from Schumacher equations by site class 
(Table 4), it is possible to observe that in the case of 
biological consistency, a reduction of the opposite of 
the coefficient β1 (rotation age) with increase in site 
quality and tendency to increase productivity in the 
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same direction occurs. In this sense, MAIs of 6.37 m³/
ha/year, 10.96 m³/ha/year, 12.01 m³/ha/year, 12.65 m³/
ha/year and 13.21 m³/ha/year were recorded for sites 
V, IV, III, II and I, respectively.

With the exception of site V, whose productivity 
was low and similar to that reported by Aldana et 
al. (2006) for the species in the company’s planning 
(6.50 m³/ha/year), and site I, whose productivity was 
above 13 m³/ha/year, the MAIs are consonant with 
the results of Barrero et al. (2011), who found MAIs 
between 10  m³/ha/year and 12  m³/ha/year. TRAs 
indicated by the obtained equations (Tables 3 and 4) 
also correspond to the TRAs between 30 and 35 years 
found by these authors.

3.2. Equations for growth and yield prognosis 
in Pinus caribaea var. caribaea plantations

In the Clutter equations (Table 5), the negative 
signal of the parameter β1 estimate indicates the 
consistency of the volume estimates. On the other hand, 
the same negative signal in the estimate of parameter 
α1 (α1= −0.091), in the basal area projection equation, 

Table 4. Estimates of Schumacher model parameters fitted by site class.

S β̂0
* β̂1

* β̂0 =
β0
*

1−ρ β̂1 = β̂1
* Raj

2 (%) RYX (%) Sig. F TRA

I 0.09* −30.97* 6.99* −30.97* 98.70 2.91 < 0.0001 30.97

II 0.09* −32.28* 6.99* −32.28* 98.33 3.52 < 0.0001 32.28

III 0.19* −32.98* 6.98* −32.98* 93.95 5.35 < 0.0001 32.98

IV 0.21* −34.08* 6.92* −34.08* 98.67 3.03 < 0.0001 34.08

V 0.60* −34.96* 6.41* −34.96* 96.97 4.00 < 0.0001 34.96
* Significant estimate at 99% probability; ρ: estimation of autocorrelation; TRA: technical rotation age.

Table 5. Parameters estimates for basal area and volume prognosis models.

Models PV.
Estimates of parameters

R2 (%) RMSE (%) Sig. F
β0 β1 β2 β3

Clutter
(1963)

LnY2 0.831* −31.752* 0.031* 1.329* 97.45 0.14 < 0.0001

LnG2

α0 α1 96.20 0.97 < 0.0001
5.712* −0.091*

Buckman 
modified by 
Silva et al. 
(2006)

LnY2

β0 β1 β2 β3 R2 (%) RMSE (%) Sig. F
1.181* −27.352* 0.004* 1.291* 98.97 0.08 < 0.0001

LndG2

β4 β5 β6 β7 61.65 1.99 < 0.0001
−1.496* 0.061* −3.859* 1.045*

* Significant estimate to 99% confidence; PV.: projected variable; RMSE: root mean square error; Ln: natural logarithm; Y2: expected volume 
at future age A2; G2: future basal area; dG2: increase in basal area from age A1 to age A2.

indicates that the effect of the site index (S) on the basal 
area was inconsistent (Table 5). In this case, Campos 
& Leite (2017) recommend that the S in the term  
(1-A1/A2) S be replaced by LnG1, (LnG1)

2 or Hd1.

The aforementioned substitution did not generate 
any statistical contribution, so we opted to eliminate 
this term as recommended by the authors mentioned 
above and adopted by Dias et al. (2005). The basal 
area prognosis equation was then reduced in the form 
presented in Equation 5.

LnG2=LnG1
A1

A2

⎛
⎝⎜

⎞
⎠⎟
+3.923 1− A1

A2

⎛
⎝⎜

⎞
⎠⎟
;

R2 = 95.55%;RMSE =1.06%( )
 (5)

Ln: natural logarithm; A1: current age; A2: future age; G1: current 
basal area; G2: future basal area; RMSE: root mean square error;  
R²: coefficient of determination.

The minimal changes between the R² values (from 
96.20% to 95.55%) and RMSE (from 0.97% to 1.06%) 
of both forms of the model indicated that the exclusion 
of the term did not lead to statistical loss for the initial 
equation. Thus, the residual distribution of this reduced 
equation (Figure 3) presented the same problems of the 
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initial equation: an overestimation of the lower basal areas 
and an underestimation of the larger ones, coinciding 
with the trends observed by Castro et al. (2013).

Regarding the Buckman model modified by Silva 
(2006) (BMS), the estimates of the parameters related 
to the variables site index (S1) and basal area (G1) were 
positive and those related to the reverse of age (1/A2) 
were negative. This indicates biological consistency of 
the estimates since the signs of these coefficients assure 

that both basal area and volume increase when there is 
improvement in productive capacity (site index) and/
or increase in age (Figure 4).

For comparisons, BMS equations were higher than 
those of Clutter (1963). Such superiority is evident in 
the volume projection equations by criteria values such 
as R² (98.97 for Buckman versus 97.45 for Clutter), 
RMSE (0.08 against 0.14), and a non-biased residual 
distribution for the Buckman model (Figure 3).

Figure 3. Residuals distribution of production prognosis models for P. caribaea var. caribaea.
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Regarding the basal area projection, although 
the Clutter (1963) model presented higher statistical 
indicators (Table 5), the tendency to overestimate the 
smaller basal areas and to underestimate the larger ones 
is evident as previously pointed out. This tendency 
in basal area estimates had a marked influence on 
the volume prognosis whose accuracy was lower in 
this model.

Concerning the BMS system, the prognoses obtained 
with the equation of increments in basal areas were 
not biased (Figure 3).

Other aspects in favor of the Buckman system were 
the assumptions. The results of the Kolmogorov-Smirnov 
test indicated that the Buckman system equations 
satisfied the normality assumption (p-value > 0.05) 
and consequently the results of F and t-tests of this 
model are reliable (Table 5). This is not the case with 
Clutter’s equations, in which this assumption was not 
met. Regarding the Durbin-Watson test, the results 
indicate that only the residuals of the Buckman system 
are relatively free of autocorrelation. Except for the 
Clutter volume equation, all other equations satisfied 
the assumption of homoscedasticity, according to the 
White test results (p-value > 0.05).

Simulations of prognoses with Buckman system 
equations allowed to check their biological realism and 
the consistency of the estimates obtained (Figure 4). 
They were observed in these prognoses for rotation 
ages between 30 and 35 years; yields varying between 
V2 =  160.439  m³/ha (G2 =  22.46  m²/ha) for site V 
and V2 = 356.280 m³/ha (G2 = 42.81 m²/ha) for site I 
(Figure 4), thus indicating a proportionality between 

production, site, and age. These results are consistent 
with those of Francis (1992) who reported basal areas 
between 20 and 60 m²/ha for the species.

3.3. Artificial neural networks for yield 
prognosis for P. caribaea var. caribaea

The results of ANNs training indicated that the neural 
networks of Multilayer Perceptron (MLP) type with the 
number of neurons in the hidden layer varying between 
5 and 11 were the most efficient in both prediction and 
prognosis of Pinus caribaea var. caribaea production 
in Macurije Forest Company. With respect to volume 
prediction, inclusion of categorical variables allowed to 
obtain ANN_P1 with precise and consistent estimates 
(Table 6 and Figure 5) characterized by yields proportional 
to site qualities. The technical rotational ages generated 
by this ANN (Figure 5) were similar to those found with 
the Schumacher model fitted by site class (Table 4).

The ANNs also provided satisfactory results in 
prognoses of basal area and volume. Inclusion of 
dummy variables also improved the generalization 
capacity of ANNs both in basal area and volume 
prognosis (Table 6).

Leite & Oliveira (2002) test results (Table 7) 
indicated that there is no significant difference between 
the volumes observed and those estimated by the two 
approaches (ANNs and regression equations). This 
satisfactory result, evidenced by the excellent values 
of the ANNs evaluation criteria (Table 6) and the 
regression models (Table 5), together with the individual 
(Figures 3 and 6) and comparative (Figure 7) residual 

B
as

al
 a

re
a 

(m
²/h

a)

Vo
lu

m
e 

(m
²/h

a)

Age (Years)

50

40

30

20

10

0

500

400

300

200

100

0
0 5 10 15 20 25 30 35 40

SI
SII
SIII
SIV
SV

Age (Years)
0 5 10 15 20 25 30 35 40

Figure 4. Projection of basal area and volume by site class for P. caribaea var. caribaea.
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Figure 5. Mean and current annual increments determined by ANN_P1 (MLP 11-8-1).

Table 6. ANNs training results for growth prediction and yield prognosis for Pinus caribaea.

Finality IV PV ANNs Architecture
Activation Functions

RMSE (%) R2 (%)
Hidden Output

Volume 
Prediction A, S, FPBU V

ANN_P1 MLP 11-8-1 Tanh Logistic 0.04 97.96

ANN_P2 MLP 11-7-1 Tanh Tanh 0.05 98.96

Production 
prognosis

A1, A2, S, G1 G2

ANN_1 MLP 8-9-1 Tanh Exponential 0.57 99.21

ANN_2 MLP 8-9-1 Identity Logistic 0.99 99.14

A1, A2, S, G1, 
G2, V1

V2

ANN_3 MLP 10-8-1 Tanh Tanh 1.59 98.10

ANN_4 MLP 10-11-1 Identity Tanh 1.66 98.66

A1, A2, S, G1, 
FPBU G2

ANN_5 MLP 13-6-1 Exponential Logistic 0.56 99.28

ANN_6 MLP 13-8-1 Exponential Logistic 0.60 99.16

A1, A2, S, 
G1, G2, V1, 

FPBU
V2

ANN_7 MLP 15-9-1 Exponential Tanh 0.42 98.78

ANN_8 MLP 15-5-1 Logistic Exponential 1.10 99.68

PV: estimated or projected variable; IV: independent variables.

distributions, indicated similar performance between 
both approaches in volume prognosis.

Regarding the basal area prognosis, the results of 
applying the statistical procedure by Leite & Oliveira 
(2002) indicated the existence of discrepancy only 
between the basal areas observed and those estimated 
by the Buckman equation (Table 7).

In the multivariate comparison, based on both basal 
area and volume prognoses, the non-significance of the 

Hotelling’s T2 test (T2 = 0.52; F = 0.26ns) between ANN 
estimates and observed values indicates that there is no 
difference between them. However, the values estimated 
by the BMS system differed significantly from those 
observed (T² = 32.59, F = 16.17*). This difference is likely 
related to the low performance of this system in basal 
area prognosis, according to the univariate comparisons.

These results are indicative of the superiority of 
ANNs in production prognosis and are in agreement 
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Figure 6. Residual distribution of ANNs trained for growth prediction and yield prognosis.
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Figure 7. Residual distribution of ANNs and Buckman’s system modified by Silva (2006).

with Porras (2007) and Ashraf et al. (2013) whose 
results also pointed to the superiority of ANNs. This 
superiority can be attributed to exclusive characteristics 
of ANNs such as fault tolerance, the parallelism of its 
structure and its greater parsimony in comparison to 
traditional regression models.

4. CONCLUSIONS

The best growth prediction equation for Pinus 
caribaea var. caribaea plantations was the one obtained 
through fitting of the Schumacher model.

The flexibility of ANNs allowed for the inclusion 
of categorical variables (site index and FPBU) that 
enabled more accurate predictions, without losing the 
biological realism of the models and consequently the 
consistency of the estimates.

Table 7. Results obtained by applying the procedure proposed by Leite & Oliveira (2002).

Variables Models F (HO) t (e) r Mean error (e) ryjyi ≥1− e Conclusion

V2

BUCKMAN 1.85ns 1.46ns 0.98 -1.84 Yes Yi=Yj

MLP 10-8-1 1.77ns 0.97ns 0.98 -1.34 Yes Yi=Yj

MLP 15-9-1 1.53ns 0.87ns 0.99 -0.73 Yes Yi=Yj

G2

BUCKMAN 1.34ns 2.98* 0.94 -0.03 No Yi≠Yj

MLP 8-9-1 1.17ns 1.54ns 0.99 0.03 Yes Yi=Yj

MLP 13-6-1 1.03ns 1.24ns 0.99 0.02 Yes Yi=Yj

* Significant test at 95% probability; ns: non-significant test at 95% probability.

In production prognosis, the Buckman model 
modified by Silva et al. (2006) was higher than the 
Clutter (1963) model. In volume prognosis, ANNs 
and Buckman model modified by Silva et al. (2006) 
performed similarly. This was not the case in basal 
area prognosis during which ANNs generated more 
accurate estimates than those of Buckman’s equation.
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