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ABSTRACT
Pinus palustris Mill. ecosystem is considered one of the most threatened of North America. 
In  this context, studies on biomass quantification are fundamental for forest management 
plans. Thus, the objective of this study was to develop a set of allometric equations to predict 
total P.  palustris stump-biomass. Biomass data were collected at different locations in the 
southeastern United States. A total of 119 allometric equations were fitted from the combination 
of explanatory variables: diameter at breast height (DBH), height (H), age (I), basal area (G), 
number of trees per hectare (N), site index (S) and quadratic diameter (Dq). One of the models 
that presented the lowest residual standard error (Sy.x) and root mean square error (RMSE) 
was ln(W) = -0.9978+0.7082.(H)+0.1009.ln(H.DBH)-0.5310.(N)-0.0003.ln(Dq). Therefore, the 
insertion of dendrometric variables characteristic of forest stands has great efficacy in biomass 
prediction for trees from different sites.
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1. INTRODUCTION

Longleaf pine (Pinus palustris Mill.) ecosystem 
is considered one of the most threatened in North 
America. The species previously occupied approximately 
37 million hectares of coastal areas, from the state 
of Virginia to Texas through central Florida, in the 
southeastern United States. Current estimates suggest 
that only 2.2% of the original area remains in the 
country (Boring, 2007).

In Brazil, longleaf pine stands are established in 
lower proportion when compared to Pinus ellioti and 
Pinus taeda stands, mainly due to the growth stagnation 
in the shoots of trees in the early post-implantation 
years. However, provenance tests have shown that 
Pinus palustris has higher growth and lower stagnation 
of shoots, a period known as “grass stage”, when 
planted in adequate locations such as Southern Brazil 
(Shimizu, 2008).

Measures of above-ground biomass are required 
to predict site productivity, and growth and yield of 
trees and stands (Gonzalez-Benecke  et  al., 2014b). 
Besides, forest biomass studies allow the quantification 
of nutrient cycling both for energy purposes and for 
the carbon credits market. These studies also provide 
support for the sustainable management of forest 
resources (Ratuchne et al., 2016).

According to Gonzalez-Benecke  et  al. (2014b), 
biomass models are usually based on the stem diameter 
with bark at breast height (DBH), or DBH and total tree 
height (H) as independent variables. However, such 
models are restricted to specific stands and geographic 
locations. An alternative to improve the accuracy of 
allometric models is to add stand variables such as age, 
density, or productivity (Gonzalez-Benecke et al., 2014a).

Few models are found in the literature to predict 
height, diameter inside bark and volume for longleaf 
pine, and they are usually based on DBH and H as 
independent variables (Gonzalez-Benecke  et  al., 
2014a). Only one model to predict height based on 
stand-level variables such as basal area, stand age, and 
stand density was found, resulting in a general model 
(Leduc & Goelz, 2009).

The set of equations presented in this study provides 
conditions for a better understanding of forest biomass 
accumulation for one of the oldest species of the 
American territory, Pinus palustris (Boring, 2007). 

To our knowledge, the set of general biomass models 
developed in this paper will be the second carried out 
for the species.

Thus, the objective was to develop a set of allometric 
equations to predict Pinus palustris above-stump 
biomass. Also, these models can be applied to longleaf 
pine trees from a wide variety of ages and stands.

2. MATERIAL AND METHODS

The database used in this study was provided 
by the University of Florida and collected at three 
different locations: Fort Benning, Camp Lejeune, and 
Polk County.

The Fort Benning military installation (32.38°N, 
84.88°W) is located between the states of Alabama and 
Georgia. The land use was predominated by agriculture 
and grazing activities before the installation of the 
military base. Currently, approximately 84% of the area 
is reforested, and of these, 15% is composed of pure 
longleaf pine plantations. The terrain is characterized 
as predominantly rolling, with elevations between 
58 and 225 meters. The climate of the region is humid 
and mild. The mean annual precipitation measured 
between 1982 and 2011 in Columbus, Georgia, is 
1180 millimeters, and the mean annual temperature 
for the same period is 18.7 ºC (Samuelson et al., 2014).

The Camp Lejeune marine corps base is located in 
Jacksonville, North Caroline, and the climate is humid 
subtropical. Camp Lejeune holds ancient longleaf pine 
lands and their remaining habitats to support legally 
protected forest species and endangered animals, 
such as the red-cockaded woodpecker. The Lejuene 
base conducts studies on alternative soil preparation 
practices in humid sites, in partnership with the United 
States Forest Service (USFS), for the establishment of 
longleaf pine stands (Brockway et al., 2005).

Polk County (27° 57’ N, 81° 42’ W) is located in 
the central part of Florida. The prevailing climate in 
the region is humid subtropical, characterized by hot 
and humid summers and mild, relatively dry winters. 
The  average annual temperature is around 22 °C, 
and the average monthly temperature varies from 
approximately 16 °C in January and 28 °C in August. 
However, from June to September, the temperature can 
be above 32 °C (Spechler & Kroening, 2007).
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The dataset consisted of measures of 100 longleaf pine 
trees, obtained from three different sites (Fort Benning, 
Lejeune and Polk County) including ages ranging 
from 5 to 87 years. The dataset contained tree-level 
variables: DBH (diameter at 1.37 meters, cm), H (total 
height, m) and W (total above-stump biomass, kg), and 
stand-level variables: A (stand age, years), N (number of 
trees per hectare, ha¯1), BA (stand basal area, m2 ha¯1); 
Dq (quadratic mean diameter, cm) and S (site index, 
dominant height at reference age of 50 years, m). 
The main features of tree-level and stand-level variables 
are shown in Table 1.

The fitting of equations was performed by the 
ordinary least squares method (OLS) using the R 
software (R Core Team, 2013). Biomass models were 
created using independent variables H and DBH, as 
well as their modified forms: H.DBH2 (product of 
H by squared DBH), lnH (natural logarithm of H), 
lnDAP (natural logarithm of DBH), and lnH.DBH 
(natural logarithm of H by DBH).

The Pearson correlation coefficient ( xyr ) was used 
to measure the degree of association among variables 
added to models. Only variables that showed positive 
or negative correlation were added to models analyzed 
in this study. The maximum number of possible 
combinations was performed among previously 
mentioned variables, which resulted in 63 models 
containing tree-level variables.

For generic biomass models, the following stand-level 
variables were added to traditional models: age (I), 
basal area (G), number of trees per hectare (N), site 
index (S), quadratic diameter (Dq), as well as their 
modified forms: ratio between DBH and Dq (Dp), 
natural logarithm of age (LnI), basal area (LnG), number 

of trees per hectare (LnN), site index (LnS), quadratic 
diameter (LnDq), ratio between DBH and Dq (LnDp), 
and inverse of age (I-1). Since the combination of these 
variables would generate thousands of models for 
analysis, making it impossible to evaluate all of them, 
a correlation matrix was used to choose 56 models 
containing stand-level variables.

Models were analyzed by the adjusted determination 
coefficient (R2) and residual standard error (Sy.x) to 
evaluate the goodness of fit for biomass prediction 
models. The variance inflation factor (VIF) was calculated 
to verify the presence of multicollinearity among 
independent variables. All models with VIF > 10 were 
eliminated, as proposed by O’Brien (2007).

The validation process was performed by the k-fold 
cross-validation technique, in which database was 
randomly divided into 10 blocks: 9 blocks were used 
to fit biomass models, and then the remaining block 
was used to predict biomass values. This procedure 
was repeated 50 times and generated prediction errors 
for each tree. The root mean square error (RMSE) was 
used to evaluate the accuracy of models.

3. RESULTS AND DISCUSSION

3.1. Model fitting

Only 12 models resulted in VIF < 10 of the total 
of 63 models containing H and DBH as explanatory 
variables. These models are represented by Equations 1-12.

( ) ( )   = + + +0 1 2 iLnW H DBHβ β β ε   (1)

( )   ( . )= + + +2
0 1 2 iLnW H H DBHβ β β ε   (2)

Table 1. Summary statistics of longleaf pine dataset.

Attribute Units Mean Standard  
deviation Minimum Maximum

I years 28.4 24.2 5 87
DBH cm 16.0 13.7 0.81 54.3

H m 11.5 7.7 0.55 30.4
N n.ha-1 924 589.6 50 2150

BA m2 ha-1 14.2 8.6 0.21 30.2
Dq cm 16.9 10.7 1.80 51.1
W kg 262.3 492.5 0.20 2149.9
SI m 21.27 4.08 13.74 33.86

I: stand age; DBH: diameter outside-bark at 1.37 meters; H: total tree height; N: number of trees per hectare; BA: stand basal area; Dq: 
quadratic mean diameter; W: total above-stump biomass; SI: site index, dominant height at reference age of 50 years.



4/7 Farias AA, Gezan SA, Carvalho MP, Ferraz Filho AC, Soares CPB Floresta e Ambiente 2019; 26(Spec No 1): e20180403

( ) ( )   ln= + + +0 1 2 iLnW H Hβ β β ε   (3)

( )   ln( )= + + +0 1 2 iLnW H DBHβ β β ε   (4)

( )   ln( . )= + + +0 1 2 iLnW H H DBHβ β β ε   (5)

( )   ( . )= + + +2
0 1 2 iLnW DBH H DBHβ β β ε   (6)

( ) ( )   ln= + + +0 1 2 iLnW DBH Hβ β β ε   (7)

( ) ( )   ln= + + +0 1 2 iLnW DBH DBHβ β β ε   (8)

( ) ( )   ln .= + + +0 1 2 iLnW DBH H DBHβ β β ε   (9)

( )   ( . ) ln= + + +2
0 1 2 iLnW ln H DBH Hβ β β ε   (10)

( )   ( . )= + + +2
0 1 2 iLnW ln H DBH ln DBHβ β β ε   (11)

( )   ( . ) ln .= + + +2
0 1 2 iLnW ln H DBH H DBHβ β β ε   (12)

Some of the models selected by the VIF restriction 
presented high residual standard error (Table 2) and, 
consequently, were discarded before the cross-validation 
process.

The 5th and 9th models presented the best fit 
according to analyzed precision measurements, and all 
parameter estimates were significantly different from 
zero (P <0.001). The 5th model presented R2 = 97.67%, 
which means that this model can explain 97.67% of 
the variation in longleaf pine biomass. Similarly, the 
9th model showed a high determination coefficient, 
indicating that 97.84% of the variation in biomass 
values are explained by explanatory variables DBH and 

ln (H.DBH). The residual standard error was similar 
for both models. When the models analyzed result 
in similar statistics, a less complex model should be 
selected. In this case, the 9th model was chosen over 
the 5th model due to its lower residual standard error.

Models containing stand-level variables as 
explanatory variables and VIF < 10 are represented by 
Equations13-26. Models that presented high residual 
standard error were not used in the cross-validation 
process (Table 3).

( ) ( )
( ) ( ) ( )
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( ) ( ) ( )    .= + + + +0 1 2 3 iLnW DBH ln H DBH N   β β β β ε   (18)

( ) ( )    . ln( )= + + + +0 1 2 3 iLnW DBH ln H DBH G   β β β β ε   (19)

Table 2. Statistics for the 12 biomass models containing 
tree-level variables and VIF < 10. Best models are 
highlighted in bold.

Model Sy.x R2 Adjust.
1 0.7206 0.9155
2 0.6908 0.9223
3 0.5883 0.9437
4 0.3834 0.9761
5 0.3783 0.9767
6 0.546 0.515
7 0.4624 0.9652
8 0.456 0.9661
9 0.3641 0.9784

10 0.6999 0.9203
11 0.5266 0.9548
12 0.4417 0.9682

Sy.x = Standard error; R2 Adjust. = adjusted; determination 
coefficient; VIF = variance; inflation factor.

Table 3. Statistics for the 14 biomass models containing 
stand-level variables and VIF < 10. Best models are 
highlighted in bold.

Model Sy.x R2 Adjust.
13 0.3058 0.9848
14 0.3067 0.9847
15 0.2898 0.9863
16 0.2948 0.9859
17 0.3201 0.9833
18 0.3502 0.98
19 0.3264 0.9827
20 0.3363 0.9816
21 0.3529 0.9797
22 0.3084 0.9845
23 0.3191 0.9834
24 0.348 0.9803
25 0.4009 0.9738
26 0.4859 0.9616

Sy.x = Standard error; R2 Adjust. = adjusted determination 
coefficient; VIF = variance inflation factor.
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( ) ( )    . ln( )= + + + +0 1 2 3 q iLnW DBH ln H DBH D   β β β β ε   (20)

( ) ( ) ( )    .  = + + + +0 1 2 3 iLnW H ln H DBH Nβ β β β ε   (21)

( ) ( ) ( )    .  = + + + +0 1 2 3 iLnW H ln H DBH ln Gβ β β β ε   (22)

( ) ( ) ( )    .  = + + + +0 1 2 3 q iLnW H ln H DBH ln Dβ β β β ε   (23)

( ) ( ) ( )    .  = + + + +0 1 2 3 p iLnW H ln H DBH Dβ β β β ε   (24)

( ) ( ) ( )    .  = + + + +0 1 2 3 q iLnW ln H DBH N ln Dβ β β β ε   (25)

( ) ( )   .  = + + +0 1 2 q iLnW ln H DBH ln Dβ β β ε   (26)

The 15th and 16th models were selected after evaluation 
of precision measurements. The determination coefficient 
(R2) for the 15th and 16th models were 98.63% and 
98.59% respectively, confirming the ability of models 
to explain the variation in biomass values. Residual 
standard errors for the selected models were similar. 
In this situation, the simplest model should be chosen 
over the more complex one.

Residual scatterplots against predicted biomass 
values for the four selected models revealed residuals 
uniformly distributed around zero, despite the presence 
of some outliers for Longleaf pine trees with low biomass 
content (Figure 1).

The presence of outliers for lower biomass values 
can be explained by the higher frequency of adult trees 
in stands under study.

3.2. Model validation

Table 4 shows the RMSE values for the 4 selected 
models after cross-validation.

RMSE was lower when explanatory variables number 
of trees per hectare (N), quadratic diameter (Dq), and 
basal area (G) were added to the 5th biomass model.

Cross-validation confirmed the goodness of fit for 
the 15th and 16th models to predict biomass of Longleaf 
pine stands located in the southeastern United States, 
which reinforced the residual standard error results 
and scatterplots of models.

Figure 1. Residual scatterplots for the four selected models containing tree-level and stand-level variables.

Table 4. RMSE (Root Mean Square Error) comparison for the selected models after cross-validation.

Models RMSE
5th: ( ) ( ) ( ). . . . . .= − + +ln W   1 8702 0 1114 H 0 5818 ln H DBH 0.2838
9th: ( ) ( ) ( ). . . . . .= − + +ln W   1 7709 0 0544 DBH 0 6273 ln H DBH 0.2688
15th: ( ) ( ) ( ) ( ) ( ) ( ). . . . . . . . . . . .= − + + − − +ln W   0 7785 0 7124 H 0 0979 ln H DBH 0 6353 G 0 0004 ln N  0 0122 ln Dq 0.2156
16th: ( ) ( ) ( ) ( ) ( ). . . . . . . . . .= − + + − −ln W   0 9978 0 7082 H 0 1009 ln H DBH 0 531 N 0 0003 ln Dq 0.2090
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Accurate biomass equations are necessary 
to manage and monitor longleaf pine stands. 
The dataset used in this study covered different 
locations in the southeastern United States, and 
the models reported here can be applied to a wide 
variety of ages and stands. However, since there 
was no information on thinning practices for the 
stands, the models should be used in conditions of 
no strong thinning influence, as recommended by 
Gonzalez-Benecke et al. (2018).

Although the trees used in the modeling process 
have come from different locations, all stands presented 
similar features that allowed using multiple linear 
regression. Linearization of biomass models has 
been used in many studies (Repola, 2008; Litton & 
Boone, 2008; Mugasha et al., 2013; Chave et al., 2014), 
mainly due to its simplicity (Ferraz Filho et al., 2018). 
Alternatively, other approaches can be used to increase 
the accuracy of growth predictions of forest stands 
such as Artificial Neural Networks (Binoti et al., 2013; 
Reis et al., 2016; Ferraz Filho et al., 2018), support vector 
machines (Cordeiro et al., 2015; Cosenza et al., 2015) 
and Quantile Regression (Araújo et al., 2016). However, 
these methods are computationally intensive and should 
be used with caution due to potential restrictions on 
extrapolations (Ferraz Filho et al., 2018).

4. CONCLUSION

The addition of stand-level variables to linear 
regression models has great efficacy to predict 
total Pinus palustris trees biomass from different 
sites. The explanatory variables quadratic diameter 
(Dq), basal area (G) and number of trees.ha-1 (N) 
were crucial to capture stand variation and predict 
P. palustris biomass.
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