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ABSTRACT
Brazil has many rural properties with unmanaged eucalyptus stands. These plantations are 
heterogeneous, presenting different tree sizes, advanced ages, and large wood volumes that can 
be quantified using forest inventories. The prediction error of dendrometric variables, mainly 
in highly heterogeneous areas, can be associated with inadequate forest inventory procedures, 
i.e. low intensity of sampling plots. However, a larger number of plots increases the cost of 
inventorying. Therefore, a promising alternative is forest stratification into homogeneous sub 
areas. Accordingly, the aim of this study was to analyze the reduction of volume estimate errors 
by post-stratification procedures. We used the normalized difference vegetation index (NDVI) 
derived from Landsat 8 and Spot 6 images and geostatistical techniques, such as kriging the 
volume (V) and diameter at breast height (DBH). The most precise method to estimate the total 
volume was the stratified random sampling (STS), based on geostatistical interpolation, using 
the DBH (error lower than 10%).
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1. INTRODUCTION

In Brazil, unmanaged eucalyptus plantations are 
commonly found on rural properties, as well as in 
abandoned plantations and former experimental areas 
of universities and corporations. These plantations are 
mostly used as a wood stock and are characterized by 
trees of different sizes, advanced ages, and large wood 
volumes (Oliveira et al., 2015).

Traditionally, volume is quantified by forest 
inventories, which estimate the characteristic of 
interest using random sampling. The processing of 
forest inventories is performed by classical statistical 
procedures, which consider that the spatial variations 
of a given characteristic are independent. Surveys of 
highly heterogeneous forests demand a large number 
of samples to obtain greater precision, which makes 
this procedure costly. Moreover, the survey may not 
achieve adequate precision due to high forest variability. 
Thus, the use of procedures that consider some level 
of stratification is recommended in such situations.

According to Kanegae et al. (2006), stratification 
influences the cost and precision of the inventory 
since it allows us to control forest variability. In this 
case, the forest is divided into homogeneous units, 
according to a common characteristic. Stratification 
is a sampling procedure that mitigates the effect of 
forest variability and increases inventory precision. 
Mello & Scolforo (2000) compared several sampling 
procedures and concluded that the ones based on 
stratification were more precise than those based on 
randomization. However, the definition of the strata is 
a difficult task due to little forest information prior to 
the inventory. Therefore, the use of geotechnology can 
be an alternative for both pre- and post-stratification 
(Alvarenga, 2012).

The introduction of new techniques for forest 
post‑stratification is even more significant in poorly 
managed areas and plantations, resulting in a heterogeneous 
forest. This fact hinders the allocation of an adequate 
number of plots in the field, and consequently influences 
the reliability of the results. Several researchers have 
investigated the spatial dependence of biometric variables 
in eucalyptus plantations of up to 7 years of age that 
received adequate management. Little is known about 
the spatial behavior of these characteristics in older 
plantations without adequate management.

The evaluation of forest resources began in the 50’s 
using remote sensing techniques. Satellite images are 
an essential component in the development of new 
tools for forest management, as they can be used to 
obtain forest characteristics. Vegetation indices have 
been used to correlate the spectral information derived 
from the images as forest biophysical indicators. In this 
context, the Normalized Difference Vegetation Index 
(NDVI) is the most commonly used. The NDVI is based 
on the high absorption of electromagnetic radiation 
in the red region (650-690 nm) due to chlorophyll, 
and maximum reflectance in the near infrared region 
(NIR; 725-900 nm), controlled by the internal leaf 
structures. Their values vary from -0 to 1; the closer 
to 1, the denser the vegetation cover. Values closer to 
0 represent non-vegetated surfaces (Rouse et al., 1973). 
Several studies have used images to estimate variables, 
such as biomass (Martins  et  al., 2011), percentage 
of canopy cover (Carreiras  et  al., 2006), diameter 
at breast height (Linhares & Ponzoni, 2001), height 
(Accioly et al., 2002), and basal area (Ghahramany et al., 
2012), among others.

The use of geostatistical interpolation techniques 
is also a way to obtain information about important 
forest variables (Leal, 2013). Reis (2015) evaluated the 
potential of geostatistical interpolators in eucalyptus 
stand stratification and obtained greater precision for 
volume estimates. Such techniques provide tools to 
understand an apparent data randomness, but with 
possible spatial structuring. The geostatistical interpolator 
can effectively predict dendrometric variables without 
increasing the cost when compared with traditional 
methods (Mello, 2004).

Thus, the objective of this study was to analyze the 
precision, i.e., the error reduction of the volumetric 
estimate, by means of post-stratification procedures. 
We used the NDVI values derived from satellite 
images (SPOT6 and Landsat 8) and the kriging of the 
diameter at breast height (DBH) and volume (V) in 
heterogeneous and unmanaged eucalyptus plantations.

2. MATERIAL AND METHODS

2.1. Characterization of the study area

The study area (Figure 1) is located in the Vale do 
Paraíba, state of São Paulo (SP), Brazil, with approximately 
734.12 ha, of which 359.60 ha is covered by eucalyptus 
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plantations. The stands have not been managed in 
years, with several species and ages, in a sloping area. 
For these reasons, the eucalyptus stands present great 
heterogeneity regarding the dendrometric variables, 
such as diameter and tree height.

2.2. Data base

The company IMA Florestal collected the forest 
inventory data in September and October 2014. 
The forest inventory procedures i.e. intensity and sample 
design, as well as the field measurements and models 
used to estimate the dendrometric variables followed 
the operational criteria adopted by the company. 
The forest inventory was conducted by a systematic 
sampling design (Cochran, 1977), where sample units 
were allocated to cover the spatial variability of the 
characteristic of interest in the entire area. According 
to Mello (2004), this procedure is the most frequently 
used by reforestation corporations, differing from a 
conventional sampling design procedure since the 
distance between plots is not constant. The sampling 
intensity was the same that forest companies adopted, 
i.e. one plot per ten hectares (1/10 ha). In the whole 
area, 36 circular plots with a fixed area of 400 m2 were 
allocated and georeferenced.

All trees with diameter at breast height (DBH) greater 
than 5 cm were measured using a measuring tape and 
thus, the arithmetic mean diameter was calculated for 

each plot. Part of the trees had their total height (H) 
measured (the ten trees of the central row of the plot) 
using a digital clinometer. A hypsometric equation was 
applied, using the modified Scolforo model, since not 
all trees were measured (Equation 1):

( ) ( )* *
11.11226 0.716408 4.70065= + −Ln H Ln Hmax

DBH
	(1)

(R2=92.24%)

where:

H= total height; Hmax = maximum height measured 
in the plot (m)

DBH = diameter at breast height (at 1.30m from the 
ground).

A sample of 135 trees, distributed in five diameter 
classes, were scaled using the Smalian method. 
The volume was parameterized using the Hradetzky 
polynomial equation (Equation 2):
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(R2=96.0%)

where:

di = diameter measured at height Hi;

DAP = diameter at breast height (1.30 m from the 
ground);

Hi = heights measured along the log and H = total 
tree height.

The wood volume per plot was estimated by the 
sum of the individual values of the trees recorded in 
each plot.

2.3 Geostatistical analyses

We performed an exploratory analysis of the 
dendrometric variables (DBH and volume), as a first 
step for the geostatistical approach. This analysis consists 
of verifying the existence of a trend and discrepant 
data that can significantly affect the behavior of the 
experimental semivariogram.

The next step was the semivariogram modelling 
using the R software, with the geoR package (Ribeiro & 
Diggle, 2001). The dendrometric variables interpolation 
was performed by kriging, a geostatistical interpolator 
developed by Matheron (1963). This interpolator 
estimates the values at unsampled locations based 

Figure 1. Study area.
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on the values of surrounding sampled locations, 
considering the structure of spatial dependence. Kriging 
interpolation was performed using the geostatistical 
software package ArcGis 10.1 with Geostatistical Analyst. 
The maps generated were used to define the strata in 
the post-stratification forest inventory. We adopted four 
strata, as described in Kanegae et al. (2006). In their 
study, the authors evaluated five different quantities of 
strata generated by the kriging and Inverse Distance 
Weighting (IDW) methods and found that four is 
the optimal number of strata to work with spatial 
interpolators since it is an operational and efficient 
value for variability control.

2.4. Stratification of NDVI data

We used Landsat 8 and Spot 6 images to calculate 
the NDVI. The Landsat 8 satellite has a coverage range 
of 170 km, and its sensor (OLI) operates in the visible 
and near infrared bands, with spatial resolution of 30 m. 
Conversely, the Spot 6 satellite has a 60 km coverage 
range, and its sensor (MS) operates in the visible and 
near infrared bands, with a spatial resolution of 6 m. 
The images were taken on 08/15/2014 and 09/07/2014 
by Landsat 8 and Spot 6 sensors, respectively. Landsat 
8 was chosen since the images are the most commonly 
used to estimate biophysical vegetation parameters 
and are freely available, and the Spot 6 images present 
high spatial resolution.

The images were geometrically and atmospherically 
(surface reflectance) corrected (high level product). 
The  NDVI indices were obtained using the Envi 
5.0  software, as described by Rouse  et  al. (1973). 
The  NDVI values were stratified into four distinct 
classes with equal intervals using the ArcGis 10.1 
software. The choice of the number of strata considered 
the subsequent comparison with the kriging method.

2.5. Forest inventory processing

The target dendrometric variable was the total 
volume per plot, thus it was estimated in the following 
three ways: (i) considering all sample units within a 
non-stratified forest, using Simple Random Sampling 
(SRS) estimators; (ii) considering the forest stratification 
by the geostatistical interpolator for DBH and volume, 
where the processing was performed based on the 
Stratified Random Sampling (STS) estimators; and 
(iii) considering the stratification of the forest by the 

NDVI values of the Spot 6 and Landsat 8 images, where 
the processing was performed based on the Stratified 
Random Sampling (STS) estimators.

Subsequently, the mean estimates of the inventory 
statistics were obtained for each stratum. The precision of 
the procedures was evaluated by the sampling error (%).

3. RESULTS AND DISCUSSION

Based on the values of total volume per plot, the 
forest inventory was processed using the simple random 
sample estimators. Table 1 indicates that the inventory 
error was greater than 20%.

For the conditions of this study, errors of this 
magnitude are explained due to the forest heterogeneity. 
Therefore, alternatives that reduce the error must 
be developed. Increasing the number of plots is an 
option; however, it also increases the cost of the 
inventory. A  promising alternative would be forest 
stratification in homogeneous subareas. This study 
sought to perform a post-stratification based on the 
diameter at breast height (DBH) and volume (V) per 
plot, using the kriging interpolator. Figure 2 shows 
the graphs generated in the exploratory analysis of 
the studied variables.

The DBH analysis and volume data presented no 
trend in relation to the north-south and east-west 
directions and also the box plot graph confirmed data 
discrepancy (outliers). This analysis is important since 
such data considerably affects semivariogram behavior, 
especially the initial part of the semivariogram. Only the 
volume presented two values that could be considered 
outliers; however, these values were not removed as 
they did not affect the geostatistical evaluations.

According to the semivariogram analysis, the 
characteristics evaluated in this study are spatially 

Table 1.   Statistics based on simple random sampling.

STATISTICS VALUE
Mean (m3/plot) 156

Standard deviation (m3/plot) 131.7
Coef. of variation (%) 84.4

Mean standard deviation (m3/plot) 21.9
Inventory error (m3/plot) 37.23

Error (%) 23.7
Sample intensity (plot) 199

Confidence Interval (ha) 118.8 ≤ μ ≤ 193.23
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structured, i.e., there is a structural function modelled by 
semivariance behavior. Figure 3 shows the experimental 
semivariogram and the models fitted for mean DBH per 
plot and volume per plot. A spatially correlated structure 
was detected for the two characteristics. The Gaussian 
model was the appropriate theoretical model for both 
variables. Table 2 presents the model parameters.

According to the classification proposed by 
Biondi  et  al. (1994), both variables presented high 
spatial dependence (>75%). Assis et al. (2009) state 
that projects with an intermediate to high degree of 
dependence can generate maps that correspond to an 
unbiased post-stratification, without trend, i.e., more 
precise in the spatial detail of the dendrometric variable 
of interest. The cause of this high spatial dependence 
value is the low nugget effect value, which is the part 
of the error not explained by the model. Therefore, 

the estimates of the studied variables will be more 
precise by applying this model. Figure 3 shows that 
the semivariogram for DBH presented lower nugget 
effect, which implies more precise estimates in the 
kriging process. The magnitude of the nugget effect 
is related to small-scale sampling and measurement 
errors. For being an easily obtainable characteristic, 
DBH presents lower measurement errors.

Figure 2. Exploratory analysis of the variables (A) DBH and (B) Volume.

Figure 3. (a) Fitted semivariogram for DBH; (b) Fitted semivariogram for Volume.

Table 2. Estimate of the parameter nugget effect (τ2), 
structured variation ( 2σ ), sill (τ2 + 2σ ), range (ϕ), and 
relative variation structured / spatial dependence (DE%) 
of the gaussian model fitted to the semivariogram for 
each dendrometric variable.

Dendrometric 
variables τ2 2σ τ2 + 2σ

ϕ  
(m)

DE 
(%)

DBH 1.35 10.54 11.89 590 88.64
Volume 2.49 12.05 14.54 695.59 82.85
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The presence of the spatial dependence structure 
in the evaluated data allowed generating maps that 
correspond to a post-stratification of the study area. 
Figures 4 and 5 present untrended and unbiased maps 
that correspond to this post-stratification based on 
DBH and volume.

The number of plots per stratum varies according to 
the spatial structuring of each biometric variable. The more 
structured the variable, the better the stratification. 
From the strata presented in Figures 4 and 5, the forest 
inventory was processed using the stratified random 
sampling estimators generated by the geostatistical 

interpolation. The choice of plots per stratum considered 
their distribution within the strata generated by the 
kriging of the DBH and volume variables.

Stratifications based on NDVI were performed in 
two different spatial resolutions: 30 m (available for 
free) and 6 m resolution. Based on the classes presented 
in this study, the maps in Figures 6 and 7 correspond 
to the stratification for each image.

Both Spot and Landsat images, (strata 1 and 4), 
i.e., those with the lowest and highest NDVI values, 
respectively, correspond to smaller portions of the 
area within the forest. From the strata presented in 

Figure 4. Results of DBH stratification by kriging interpolation.
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Figures 6 and 7, forest inventory was processed using 
the stratified random sampling estimators generated 
by the NDVI intervals for each image.

3.1. Comparison between methods

Table 3 shows the main statistics of the inventory 
processing for volume for each stratification and the 
sample intensity required to obtain an error of (at most) 
10% in relation to the mean. This sample intensity makes 
it possible to infer about the profit with the inventory 
and to achieve precision at a lower cost. If the inventory 

were only based on simple random sampling, it would 
require four times as many plots in comparison with 
kriging of DBH, which is a marked difference.

The inventory error obtained with the STS method 
was lower than that obtained with SRS. The decrease was 
15% for STS based on kriging of DBH; 8.1% for kriging 
based on the volume; 5.3% for stratification of NDVI 
levels for Spot 6 image; and 2.5% for stratification of 
NDVI levels for Landsat 8 image. All four stratification 
methods had a lower sampling error than that of simple 
random sampling, which shows the superiority of STS 
over SRS, regardless of the stratification method used.

Figure 5. Results of volume stratification by kriging interpolation.
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Figure 6. Results of NDVI stratification by Spot 6 image.

Table 3. Comparison between the different stratifications for volume.

Estimators SRS
STS Kriging STS NDVI

DBH VOL Spot 6 Landsat 8
Mean(m3) 156.0 144.9 158.1 140.1 150.7

CV (%) 84.4 32.4 48 73.6 79.7
Inventory error (m3) 37.0 12.6 24.7 25.8 32.0
Inventory error (%) 23.7 8.7 15.6 18.4 21.2

Sample intensity (plot) 199 30 65 152 178
Confidence interval 

(m3.ha1) 119.0-193.0 132.0-157.4 133.4-182.7 114.2-165.9 118.6-182.6
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Kriging provides predictions with minimized 
variances making the stratification based on DBH 
the most precise method. In addition, it was the 
only procedure that presented errors lower than the 
maximum of 10%. This fact can be explained since 
DBH is a direct and easy measure and therefore less 
subject to field errors. Additionally, due to the greater 
spatial structure, kriging of DBH captured the variability 
of the area, and thus generated better-defined strata 
(Kanegae et al., 2006).

The NDVI method, traditionally used in the 
estimation of forest biomass, was the least precise. 
This fact may be associated with the heterogeneity of 
the stands, which were composed of trees of different 
sizes, generating canopy gaps and shadows, leading to 
greater variation in NDVI values. In turn, this high 
variability of NDVI values ​​generated fragmented strata, 
less consonant with the productivity of the stand. 
However, among the methods evaluated in this study, 
stratification by NDVI has the advantage of being the 

Figure 7. Results of NDVI stratification by Landsat 8 image. 
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only one that allows a pre-stratification of the area, 
enabling a better planning of the field campaign and 
inventory cost estimates. Silva et al. (2014) state that 
the use of remote sensing images for stratification prior 
to field surveying provides a better spatial distribution 
of plots, avoiding the occurrence of strata without 
adequate sampling.

The Spot 6 images were more precise than those of 
Landsat 8. This difference is explained by the higher 
spatial resolution of the former (6 m). The images of the 
Spot 6 sensor, despite being the most recommendable 
due to their greater precision, are not available for free 
as the Landsat 8 images are. Therefore, this should be 
taken into account when choosing the best method, 
which varies according to the purpose of the inventory.

Stratification based on the geostatistical interpolator 
contributed to a great reduction in the sampling error. 
However, only the kriging of DBH proved to be efficient 
since it captured the spatial distribution of the strata 
and increased the precision of the forest inventory, 
consequently generating a significant reduction in the 
estimates error. The sample intensity value (Table 3) 
presents the ideal number of plots required for each 
case in order to reach the acceptable error of 10%.

Table 3 shows that future samplings of the kriging 
of DBH can use a smaller number of plots to obtain a 
desirable error level. This will lead to cost reductions 
since it is directly influenced by the measurement 
time. Kanegae et al. (2006) reported that the use of the 
kriging interpolator in the definition of strata reduced 
the forest inventory error by up to 32%, corroborating 
the results observed in this study.

According to Silva et al. (2014) there is a considerable 
trend in the Brazilian forestry sector to seek cost 
reductions, and one of the alternatives to this end is 
the use of geostatistical techniques for stratification, 
such as kriging.

4. CONCLUSIONS

The precision of the estimates with post-stratification 
kriging of DBH was superior to that provided by the 
other methods evaluated due to lower estimate errors 
in the forest inventory (12.6 m3 or 8.7%). The mean 
DBH per plot is easily measurable and consequently 
has a low cost, besides having a high correlation with 
the volume. Therefore, it can be recommended for 

post stratification in unmanaged eucalyptus forests 
with high heterogeneity.

STS via the Landsat 8 image reduced the error 
by 2.5%, while STS via the Spot 6 image reduced 
the volumetric estimate error by 5.3%. Despite the 
stratification based on the NDVI values not presenting 
better precision of volumetric estimate, the method 
has the advantage of being the only one, among those 
evaluated in this research, to allow pre-stratification 
of the area.
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