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ABSTRACT
The aim of this study was to estimate the basal area, through traditional sampling processes and 
geostatistical interpolation, and compare it to the forest census carried out in 25 ha of a Mixed 
Ombrophilous Forest remnant. The sampling simulations were structured for the systematic 
sampling, two stages, and simple random, in intensities 5, 11, and 22% of the potential sample 
units of 25 × 25 m. The increase in sample intensity for the systematic sampling and two stages 
revealed a higher level of spatial behavior details of the basal area, whereas when comparing 
the census with sampling, it was observed that the geostatistical interpolation shows ability to 
improve the accuracy of the basal area estimation.
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1. INTRODUCTION

Forest inventory has quantitative and qualitative 
information about forests (Campos & Leite, 2013). 
Regarding data collection, forest inventories can be 
classified into the total enumeration or census, in which 
all the individuals of the population are observed and 
measured, obtaining true values, while only a part of 
the population is observed for the sampling and an 
estimation of its parameters is obtained, which conveys 
an error (Péllico & Brena, 1997).

The process for performing the census of a forest 
is considered a time-consuming and onerous task 
(Machado & Figueiredo, 2006), hence the vast majority 
of forest inventories are carried out by sampling (Péllico 
& Brena, 1997). Thus, the sampling process and its 
sample intensity become the basis for estimating the 
characteristics of a population (Scolforo & Mello, 2006), 
and whose inadequate choice may underestimate or 
overestimate the forest interest variable (Corte et al., 
2013).

Some researchers have evaluated and obtained 
some conclusions about different sampling processes 
and intensities in native forest inventories, such 
as Higuchi (1987) who observed that systematic 
sampling is more accurate than random sampling in 
commercial inventories in humid tropical rainforest 
on the mainland of Manaus; Ubialli et al. (2009) in an 
ecotonal forest in the northern region of Mato Grosso 
and Cavalcanti et al. (2009) in a native area located in 
the municipality of Sena Madureira in the Acre State, 
finding that the parcels/stands with the smallest error 
do not depend on the sampling process, while smaller 
errors were produced at higher sample intensities; and 
Corte et al. (2013) to express diversity in Araucaria 
forests in the municipality of Fernandes Pinheiro in 
Parana State, who found that the random process better 
represented the number of species in smaller sampled 
areas, whereas the systematic process better represented 
the number of species in larger sampled areas.

Significant evolution has been observed in 
the development of technologies that aid in forest 
inventories since the beginning of the development 
of the Geographic Information System, enabling to 
obtain and process the geographical position of parcels 
(Brandelero  et  al., 2008). Also, the introduction of 
geostatistical modeling has enabled spatial data analysis 

(Pereira et al., 2016) which presents spatial variability 
along with some degree of organization or continuity 
expressed by spatial dependence (Vieira, 2000).

With the detection of the spatial dependence of 
forest variables, geostatistics becomes an important 
tool for interpolating information in non-sampled 
sites (Akhavan et al., 2015). Thus, the construction 
of thematic maps can aid in forest planning by 
investigating the influence of different processes and 
sampling intensities on natural forests, mainly in the 
basal area, through which it is possible to express the 
phytosociological parameters and assign wood exploitation 
(Freitas & Magalhães, 2012; Souza & Soares, 2013). 
Despite sampling and geostatistics strategies being 
old techniques applied in forest inventories, there is 
a need for indicator surveys to compare the estimates 
of the two methods with respect to the parametric 
value of the forest.

Thus, considering the hypothesis that the geostatistical 
interpolator provides statistically similar estimates to 
the parameters obtained in a forest census executed 
in remnants of Mixed Ombrophilous Forest, the aim 
of this study was to estimate the basal area using 
traditional sampling processes and the geostatistical 
interpolator, comparing it to the actual values obtained 
from the forest census.

2. MATERIAL AND METHODS

2.1. Study area

The study was conducted in a Mixed Ombrophilous 
Montana Forest remnant located in the Irati National 
Forest at an average altitude of 820 m, between the 
coordinates 25°01’S and 25°40’S and 51°11’W and 
51°15’W. The climate of the region is of Cfb type 
(Köppen), with average temperatures of 17.5 °C and 
rainfall above 1,500 mm year-1 (Alvares et al., 2013), 
where the predominant soils are of Latosol and 
Cambisol orders.

2.2. Forest census

The parametric basal area of 30.6 m2 ha-1 was 
obtained from performing the census in 25 ha of 
the forest, in which all individuals with a diameter 
of 1.3 m (DBH) equal or greater than 10 cm were 
identified, measured and geo-referenced. The forest 
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remnant has been maintained without interventions 
for approximately 70 years (Figueiredo et al., 2010).

2.3. Processes and sampling intensities

The forest remnant area was segmented into a 
mesh composed of 400 units of 25 m × 25 m, used for 
composing the samples for simulating processes and 
sampling intensities. Thus, three intensities were defined 
for the simulations to standardize the number of units 
sampled. In the first, a number of 20 sample units was 
established expressing 5% (1.25 ha) of the reference 
area (25 ha) (Figure 1A, D and G); the second included 
the measurement of 44 sample units, representing 11% 
of the population (2.75 ha) (Figure 1B, E, H); while 
the third considered 88 units, corresponding to 22% 
of the potential units (5.5 ha) (Figure 1C, F, I).

The processes were simulated for systematic 
sampling, two-stage sampling, and simple random 
sampling. In  the systematic sampling, the sample 
units were selected in the stages between the lines (k1) 
and between units of the line (k2): a sample intensity 
of 5% was defined as the range k1 of 75 m and k2 of 
200 m (Figure 1A); an intensity of 11% presented a 
k1 of 75 m and k2 of 100 m (Figure 1B), while a k1 of 

75 m and k2 of 50 m were used for the intensity of 
22% (Figure 1C). The interval between lines (k2) was 
greater than the interval between lines (k1)due to the 
rectangular shape of the fragment,

The reference area was divided into 25 primary 
units (N) of one hectare each (100 m × 100 m) and 
subdivided into 16 secondary units (M) of 25 m × 25 m 
for the structural organization of the two-stage sampling. 
For the sampling intensity of 5%, five primary units (n) 
and later four secondary units (m) were randomized 
(Figure 1D). For the intensities of 11 and 22%, each 
primary unit consisted of 16 secondary units (M), of 
which four (Figure 1E) and eight units (m), respectively, 
were randomly selected from each selected primary 
unit (Figure 1F).

The method of selection without replacement was 
chosen for the simple random sampling, in which all 
possible combinations of potential sample units of the 
population had equal opportunity to participate in the 
sample, and 20, 44 and 88 sample units were selected 
for the intensities of 5% (Figure 1G), 11% (Figure 1H) 
and 22% (Figure 1I), respectively.

The Grubbs (1969) test was applied to the maximum 
values and then compared with the critical values at a 

Figure 1. Allocation of sample units for the sample intensities and processes in a Mixed Ombrophilous Forest 
remnant.
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5% level of significance for analysis of the outliers. After 
their analysis, the descriptive statistics were calculated. 
Additionally, the normality of the data was verified by 
the Kolmogorov-Smirnov test (KS) for the probability 
of 95%. Next, the estimators of the sampling processes 
were calculated according to Péllico & Brena (1997), 
with the accuracy evaluated by the absolute (Ea) and 
relative (Er) errors and confidence interval (CI) at a 
95% probability level.

2.4. Geostatistical modeling

The geostatistical analysis was applied for the spatial 
dependence model through semivariance (Equation 1), 
considering the geographical position of the sample 
units in the field, the subsequent computation of 
distances (h), and the numerical differences of the 
variable (Z) in the mesh of points (Isaaks & Srivastava, 
1989). The  semivariances were determined in four 
directions in the spatial plane: 0°, 45°, 90°, and 135°, 
and matrix of the mean half-variances between the 
equivalent distances was obtained and the possible 
anisotropic phenomena were verified (Yamamoto & 
Landim, 2013).

( ) ( ) ( )
N(h)

2
i i

i=1

1h = {  Z x  - Z x +h }
2N(h)

γ   ∑   (1)

where: γ(h) = semivariance of the Z(xi) variable; 
h = distance; and N(h) = number of pairs of Z(xi) and 
Z(xi+h) points measured, separated by a distance of h.

The spherical, exponential and Gaussian models 
were used to describe the spatial dependence structure 
using the GS+ program (Robertson, 2008). For their 
adjustment, the theoretical semivariogram structure 
was defined according to Yamamoto & Landim (2013) 
as C0 = nugget effect (the value of the semivariance for 
the zero distance, which represents the random variation 
component); C = contribution (structural variance); 
C0 + C = threshold (the value of the semivariance in 
which the curve stabilizes at a constant value); and 
A = range (distance from origin to the point at which 
the plateau reaches stable values).

The adjustment of the theoretical semivariograms was 
carried out by the Weighted Least Squares Method, with 
the evaluation and selection of the models performed 
based on the minimization of the weighted sum of 
squared deviations (WSSD), the highest coefficient 
of determination (R2) and on cross-validation (R2) 
(Isaaks & Srivastava, 1989), which considers the 

linear, angular and determination coefficients of the 
cross-validation (R2

vc) and the standard error estimate 
(Syx%). They were staggered as a way to standardize the 
comparison between semivariograms according to the 
recommendation of Vieira et al. (1997).

The classification of Cambardella  et  al. (1994) 
was used to analyze the degree of spatial dependence 
(DD), in which semivariograms with a nugget effect 
less or equal to 25% of the plateau were considered as 
a strong DD; between 25 and 75% DD as moderate; 
and greater than 75% DD as weak. Subsequently, the 
interpolation was performed by ordinary point kriging 
(Equation 2), which consists of a non-skewed linear 
estimator with minimal variance for interpolation in 
non-sampled positions (Isaaks & Srivastava, 1989), in 
which the weights ( iλ ) were determined by the Lagrange 
multiplier technique (Webster & Oliver, 2007). Also, 
the thematic maps were made using the GS+ program 
(Robertson, 2008), considering the classes with absolute 
intervals of the basal area.

( ) ( )
n

*
KO 0 i i

i=1
Z x = Z xλ   ∑

  (2)

where: ( )*
KO 0Z x  = ordinary kriging estimator; iλ  = weight; 

iZ(x ) = experimental data; and n = number of sample 
units.

The comparison of the mean basal area with the 
value observed in the census was made using the 
determination of the real error (Ereal%) as proposed by 
Augustynczik et al. (2013) to verify the consistency of the 
estimates through the simulated traditional samplings 
and the geostatistical interpolator (Equation 3). Thus, 
the aim of this study was to evaluate the quality of the 
geostatistical interpolator in estimating the basal area 
for native forests.

( )real
(VE-VR)E  % = x100

VR
  (3)

where: VE = estimated value of the basal area by the 
sampling process and the geostatistical interpolator; 
and VR = real value of the basal area resulting from 
the census.

The computation of the areas for the different classes 
with absolute basal area intervals was first carried out 
to quantify the average basal area estimated by Kriging 
and then the central value of each class was multiplied 
by the corresponding size for further subdivision of 
the total experiment area (25ha).
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3. RESULTS AND DISCUSSION

3.1. Traditional estimators of sampling 
processes

No outliers for the basal area variable were observed 
according to the Grubbs test, leading to a non-rejection 
of the null hypothesis (Table 1). The asymmetry values 
that express the tail extension of the distribution, 
ranged from -0.138 to 0.664, corroborating with the 
normal distribution at the 5% probability level by the 
Kolmogorov-Smirnov test (Table 1).

When analyzing the amplitude of the basal area, its 
direct relation with the sample intensity was noticed, 
which increased as the sample intensities intensified. 
This behavior is possibly justified by the diversity found 
in multi-native forests (Lima & Leão, 2013), whose 
remainder in the present study showed 117 species 
belonging to 44 botanical families, equivalent to 
567 trees.ha-1, and not being sufficiently sampled at 
lower intensities.

For the estimation of the basal area, the lowest 
absolute (Ae) and relative (Re) errors for the intensity 
of 5% were found for the systematic sampling process, 
while the random sampling resulted in the best estimates 
for the intensities of 11 and 22% (Table 1), along with 
a tendency of smaller errors for greater intensities 
regardless of the sampling process tested, as observed 
in native forests studied by Cavalcanti et al. (2009) and 
Ubialli et al. (2009).

3.2. Geostatistical modeling

The presence of spatial dependence in all processes 
and sample intensities used to estimate the basal 
area was verified (Table 2). In general, a moderate to 
strong degree (of spatial dependence) was observed 
for the geostatistical adjustments, similar for each 
sample intensity regardless of the sampling process 
used, resulting in the possibility of generating maps 
regardless of the sample intensity used,corroborating 
with Kravchenko (2003).

The highest coefficients of determination (R2) and 
the lowest weighted sum of squared deviations (WSSD) 
were recorded for the sample intensity of 11% (Table 2) 
for all processes, in which the systematic sampling 
resulted in the best geostatistical adjustments, with R2 
of 0.952 to 0.989 and WSSD of 0.001 to 0.007. On the 
other hand, the lowest R2 and the highest WSSD values 
were observed for the two-stage and the random 
processes at the intensity of 5%.

Overall, the Gaussian model stood out as the 
best for the semivariogram adjustments; it obtained 
the lowest WSSD and the highest R2, except for the 
two-stage and the random model at the intensities 
of 5 and 22%, respectively, in which the Exponential 
model was chosen in the cross-validation (Table 3).

The adjustments selected for the spatial modeling 
of the basal area in different sample intensities and 
processes resulted in linear coefficients of 3.856 to 21.907; 
angular coefficients between 0.341 and 0.872; 
cross-validation coefficients (R2

vc) of 0.030 to 0.145; 

Table 1. Estimates of basal area using systematic sampling (1), two-stage sampling (2) and random simple sampling 
(3) in a Mixed Ombrophilous Forest remnant.

SI
(%)

Grubbs 
Test Asymmetry KS  

test
G  

(m2ha-1)
Amplitude

(m2ha-1)
Ae 

(m2ha-1)
Re
(%) CI (G m2ha-1)

(1)
5 2.296ns 0.099 0.110ns 28.2 23.3 2.6 9.1 25.6< x <30.8

11 2.704ns 0.568 0.104ns 29.8 37.2 2.5 8.6 27.2< x <32.3
22 2.635ns 0.369 0.065ns 29.4 44.8 1.9 6.3 27.6< x <31.3

(2)
5 1.820 ns 0.238 0.167ns 33.0 32.3 5.0 15.0 28.0< x <38.0

11 2.738ns 0.664 0.148ns 33.4 40.9 3.2 9.6 30.2< x <36.6
22 2.421ns 0.116 0.097ns 30.2 43.7 2.6 8.6 27.6< x <32.8

(3)
5 1.801ns -0.138 0.903ns 28.5 34.2 4.4 15.5 24.1< x <32.9

11 2.783ns 0.348 0.080ns 30.1 39.3 2.4 8.1 27.7< x <32.5
22 2.916ns 0.621 0.092ns 30.2 44.0 1.5 5.1 28.6< x <31.7

SI = Sample Intensity; KS Test = Kolmogorov-Smirnov; G = Basal area; Ae = Absolute error; Re = Relative error; CI = Confidence 
interval; and ns = not significant (Grubbs Test = no outliers values in the data series; and KS Test = normal distribution).
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Table 2. Parameters of the semivariograms adjusted for the basal area in the sample intensities and processes in a 
Mixed Ombrophilous Forest remnant.

Process SI (%) Model C0 C A (m) DD (%) R2 WSSD

Systematic

5
Spherical 0.64 29.72 152.6 2.1 0.827 0.0041

Exponential 0.64 29.88 158.9 2.1 0.742 0.0049
Gaussian 11.00 19.52 155.6 36.0 0.824 0.0040

11
Spherical 20.98 45.73 189.6 31.5 0.982 0.0002

Exponential 1.37 68.33 187.3 2.0 0.952 0.0007
Gaussian 34.10 33.10 182.6 50.7 0.989 0.0001

22
Spherical 31.64 42.28 135.6 42.8 0.887 0.0019

Exponential 7.50 68.04 130.1 9.9 0.892 0.0018
Gaussian 40.28 33.83 127.0 54.4 0.891 0.0018

Two-stage

5
Spherical 1.86 111.08 126.3 1.6 0.540 0.0170

Exponential 31.03 74.72 118.2 29.3 0.682 0.0050
Gaussian 54.85 51.81 122.3 51.4 0.663 0.0063

11
Spherical 27.91 65.83 178.6 29.8 0.847 0.0067

Exponential 6.35 88.88 182.6 6.7 0.808 0.0079
Gaussian 43.13 51.97 175.3 45.4 0.871 0.0053

22
Spherical 46.79 53.18 183.6 46.8 0.707 0.0066

Exponential 31.95 70.77 198.6 31.1 0.662 0.0074
Gaussian 57.21 43.67 169.3 56.7 0.723 0.0063

Random

5
Spherical 16.85 68.64 201.6 19.7 0.746 0.0191

Exponential 1.87 86.11 206.3 2.1 0.739 0.0179
Gaussian 31.37 57.87 206.3 35.2 0.795 0.0156

11
Spherical 10.52 50.28 189.6 17.3 0.915 0.0026

Exponential 1.43 59.82 188.3 2.3 0.908 0.0034
Gaussian 21.99 39.95 185.3 35.5 0.953 0.0013

22
Spherical 64.30 28.30 180.9 69.4 0.673 0.0041

Exponential 49.30 44.18 165.2 52.7 0.719 0.0039
Gaussian 68.70 23.79 151.1 74.3 0.663 0.0042

SI = Sample intensity; Co = Nugget effect; C = Structural variance; A = range; DD = Degree of spatial dependence; R2 = Coefficient of 
determination; and WSSD = weighted sum of squared deviations.

Table 3. Cross-validation of the geostatistical adjustments selected for the sample intensities and processes in a 
Mixed Ombrophilous Forest remnant.

Process SI (%) Selected 
model

Coefficient
R2

vc Syx (%)
Linear Angular

Systematic
5 Gaussian 13.568 0.509 0.030 19.7

11 Gaussian 9.290 0.689 0.087 26.3
22 Gaussian 9.150 0.694 0.068 28.3

Two-stage
5 Exponential 21.907 0.341 0.014 29.1

11 Gaussian 9.370 0.732 0.139 26.2
22 Gaussian 10.429 0.651 0.080 30.6

Random
5 Gaussian 10.492 0.633 0.056 32.1

11 Gaussian 4.287 0.858 0.261 23.8
22 Exponential 3.856 0.872 0.145 25.1

SI = Sample intensity; R2
vc = Cross-validation coefficient of determination; and Syx% = Standard error of estimate in percentage.

and standard error estimates (Syx%) from 19.7 to 30.6% 
(Table 3). It was observed that the linear and angular 
coefficients were distant from the ideal theoretical 
values, in addition to acceptable low R2

vc and Syx% 
considering the heterogeneity characteristics of the 
tropical forest structure.

With the semivariograms designated by 
cross-validation, a reduced dispersion of the observed 
values along the average line estimated for the systematic 
sampling was observed for all intensities, and for random 
sampling intensities of 11 and 22% (Figure 2). On the 
other hand, a greater dispersion was observed for all 
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the intensities of the two-stage process and for the 
random sampling at the intensity of 5% of the sampled 
area. In addition, isotropic behavior was admitted due 
to the similarity of directional semivariograms in the 
spatial plane.

Estimates of the nugget effect (Co) increased 
among the sampling processes to estimate the basal 
area, while the contribution (C) decreased with the 
increase in sample intensity (Figure 2). Thus, there was 
a tendency to modify the spatial structure detected by 
the geostatistical analyzes. According to Mello et al. 
(2006), it is common to observe lower nugget effect 
values at higher intensities in the executed inventories 
with a low number of sample units.

Figure 3 shows that the increase in sample intensity 
provided greater detail of the kriging information 
in basal area classes, except for the random process. 
This detailing in the variation patterns of the maps 
becomes increasingly degraded with the increase in 
the distance between the sample units and the decrease 
in the sampling intensity (Souza et al., 2014).

Different spatial patterns were observed among the 
intensities of the systematic sampling process, with a 
predominance of class IV of the basal area at intervals 
ranging from 26.0 to 32.2 m2 ha-1; followed by class III 
at the intensity of 5%; and by class V at the intensities 
of 11 and 22% (Figure 3A up to 3C). For the two-stage 
sampling process (Figure 3D up to 3F), the 5% intensity 
resulted in three basal area classes and in greater 
homogeneity, with values between 26.0 and 44.6 m2 ha-1, 
as the intensities of 11 and 22% were represented by the 
lower classes. Again, a predominance of the class IV 
basal area was observed.

When comparing the estimates for the random 
process (Figure 3G up to 3I), the greatest variability was 
found for sample intensity of 11% with the definition of 
six classes of basal area, while five and four classes were 
defined for the intensities of 5 and 22%, respectively. 
The most extensive stratum was represented by class IV, 
followed by class III at the 5% intensity, and by class V 
at the intensities of 11 and 22%.

Figure 2. Staggered semivariograms of the basal area (m2 ha-1) for the sample intensities and processes in a Mixed 
Ombrophilous Forest remnant.
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3.3. Comparison between traditional and the 
geostatistical interpolator estimators

The systematic process tended to present a lower 
mean basal area than in the random sampling, with 
errors of -0.5 and 0.3% for the inventory and the 

geostatistical interpolator, respectively, while the 
two-stage process resulted in overestimations of 
1.1 and 2.8% in relation to the census (Table  4). 
In general, the estimates resulted in values with mean 
difference lower than 1%, except for the two-stage 
sampling at the intensity of 11%.

Figure 3. Thematic maps of the basal area for the sample intensities and processes in a Mixed Ombrophilous Forest 
remnant.

Table 4. Mean basal area observed and estimated by the sampling processes and the geostatistical interpolator in a 
Mixed Ombrophilous Forest remnant.

Census
G (m2ha-1) Process SI

(%)
Inventary
G (m2ha-1)

Ereal
(%)

Geostatistics
G (m2ha-1)

Ereal
(%)

30.6

Systematic
5 28.2 -2.4 28.7 -1.9

11 29.8 -0.8 29.6 -1.0
22 29.4 -1.2 29.3 -1.3

Two-stage
5 33.0 2.4 32.1 1.5

11 33.4 2.8 31.7 1.1
22 30.2 -0.4 29.5 -1.1

Random
5 28.5 -2.1 27.5 -3.1

11 30.1 -0.5 30.9 0.3
22 30.2 -0.4 29.7 -0.9

G = Mean basal area; SI = Sample intensity; and Ereal = Real error.
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Despite the quality of the estimates by the 
geostatistical interpolator, the major underestimates 
and overestimations of the basal area occurred in the 
random and two-stage processes at the 5% intensity, 
respectively. Scolforo et al. (2016) evaluated the best 
spatial technique for mapping the above-ground 
carbon stock of tree vegetation and identified that no 
interpolator is robust enough to capture the pattern 
for extreme values. The largest errors in the census 
were observed for sample the 5% intensity (Table 4), 
as reported by Augustynczik et al. (2013).

It was observed that all the sampling processes 
presented adequate estimates for the basal area, with 
an advantage for the geostatistical modeling in the 
systematic and the two-stage sampling processes for 
the intensity of 5%. The geostatistical interpolator 
resulted in a smaller error for the random process at 
11% intensity, while the traditional sampling estimator 
presented the best estimates for the intensity of 22% 
in the two-stage and random processes.

In studies with the species Quercus suber in Spain, 
Montes et al. (2005) observed that when the basal area 
presented spatial continuity, random sampling has a 
greater standard error than systematic sampling. Contrary 
results have been observed by Lundgren et al. (2015) 
in Eucalyptus stands in the semiarid of Pernambuco, 
where random sampling showed the best results for 
estimating the individual eucalyptus volume performed 
by the geostatistical analysis. Thus, it is observed that 
spatial continuity is influenced by the different forest 
physiognomies, in addition to the various methods 
and sampling intensities.

4. CONCLUSION

Traditional forest inventory estimators and the 
geostatistical interpolator present adequate results 
when compared to those obtained by forest census, 
in which the average difference is less than 1%. Thus, 
incorporating the spatial component in forest inventory 
processing has the ability to improve the accuracy of 
basal area estimates of native forests, while the increase 
in sample intensity for systematic and two-stage 
sampling allow a greater level of detail of the basal 
area spatial behavior for composing thematic maps 
using geostatistical modeling.
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