Floresta e Ambiente
https://www.floram.org/article/doi/10.1590/2179-8087-FLORAM-2023-0026
Floresta e Ambiente
Original Article Conservation of Nature

Ontogenetic Growth of Cecropia pachystachya Can Explain Recent History of Swidden Agriculture in a Riparian Forest

Icaro Sousa Abreu, Sílvia Laine Borges Lúcio, Patrick Heuret, Ludivine Eloy, Isabel Belloni Schmidt

Downloads: 0
Views: 10

Abstract

We evaluated the pontential architectural analysis of Cecropia pachystachya to estimate tree age and reconstruct growth history in the Brazilian Cerrado. By examining internode length, branch, and inflorescence scars, we employed a retrospective method developed for Amazonian species to date growth cycles in this seasonal environment. Variations in internode length facilitated annual delimitation, with individuals producing an average of 31.4 ± 4.8 nodes per year. Most trees were approximately six years old, aligning with farmer-reported land-use history. Growth analyses indicated a biannual pattern in internode production and flowering, likely influenced by solar insolation rather than rainfall. Branching exhibited weaker, supra-annual periodicity. Despite considerable inter-individual variability in C. pachystachya, internode length remained a reliable indicator of annual growth. These findings endorse architectural analysis as a cost-effective tool for ecological monitoring and estimating pioneer species age in landscapes impacted by swidden cultivation.

Keywords

Brazilian savanna; Cecropia; Fallow; Swidden cultivation; Plant morphology

References

  • Angelsen, A., 1995. Shifting cultivation and “deforestation”: A study from Indonesia. World Development 23, 1713-1729. https://doi.org/10.1016/0305-750X(95)00070-S
    » https://doi.org/10.1016/0305-750X(95)00070-S
  • Baudoux, C., Biwolé, A., Hardy, O.J., Webber, B.L., Heuret, P., 2024. Can the competition dynamics of non-native invaders be reconstructed to reveal historical impact? The case of Cecropia peltata and Musanga cecropioides (Urticaceae) in Cameroon. Biol Invasions 26, 315-335. https://doi.org/10.1007/s10530-023-03175-4
    » https://doi.org/10.1007/s10530-023-03175-4
  • Berg, C.C., Rosselli, P.F., Davidson, D.W., 2005. Cecropia. Flora Neotropica 94, 1-230.
  • Borchert, R., Calle, Z., Strahler, A.H., Baertschi, A., Magill, R.E., Broadhead, J.S., Kamau, J., Njoroge, J., Muthuri, C., 2015. Insolation and photoperiodic control of tree development near the equator. The New Phytologist 205, 7-13.
  • Borges, S.L., Cardoso Ferreira, M., Machado Teles Walter, B., dos Santos, A.C., Osni Scariot, A., Belloni Schmidt, I., 2023. Secondary succession in swamp gallery forests along 65 fallow years after shifting cultivation. Forest Ecology and Management 529, 120671. https://doi.org/10.1016/j.foreco.2022.120671
    » https://doi.org/10.1016/j.foreco.2022.120671
  • Borges, S.L., Eloy, L., Schmidt, I.B., Barradas, A.C.S., Santos, I.A.D., 2016. Fire management in veredas (palm swamps): new perspectives on traditional farming systems in Jalapão, Brazil. Ambiente & Sociedade 19, 269-294.
  • Boyce, C., Neale, P., 2006. Conducting in-depth interwiews: a guide for designing and conducting in-depth interwiews for evaluation input, Monitoring and evaluation - 2. Pathfinder international.
  • Brienen, R.J.W., Lebrija‐Trejos, E., Van Breugel, M., Pérez‐García, E.A., Bongers, F., Meave, J.A., Martínez‐Ramos, M., 2009. The Potential of Tree Rings for the Study of Forest Succession in Southern Mexico. Biotropica 41, 186-195. https://doi.org/10.1111/j.1744-7429.2008.00462.x
    » https://doi.org/10.1111/j.1744-7429.2008.00462.x
  • Burgers, P., Ketterings, Q., Garrity, D., 2005. Fallow management strategies and issues in Southeast Asia. Agriculture, Ecosystems & Environment 110, 1-13. https://doi.org/10.1016/j.agee.2005.04.010
    » https://doi.org/10.1016/j.agee.2005.04.010
  • Cabrera, A.L., Willink, A., 1973. Biogeografia de América Latina, Série de Biologia. Organización de los Estados Americanos (OEA), Whashinton, DC.
  • Chazdon, R.L., 2003. Tropical forest recovery: legacies of human impact and natural disturbances. Perspectives in Plant Ecology, Evolution and Systematics 6, 51-71. https://doi.org/10.1078/1433-8319-00042
    » https://doi.org/10.1078/1433-8319-00042
  • Davis, R.B., 1970. Seasonal differences in internodal lengths in Cecropia trees; a suggested method for measurement of past growth in height. Turrialba 20, 100-4.
  • De Marzo, T., Pratzer, M., Baumann, M., Gasparri, N.I., Pötzschner, F., Kuemmerle, T., 2023. Linking disturbance history to current forest structure to assess the impact of disturbances in tropical dry forests. Forest Ecology and Management 539, 120989. https://doi.org/10.1016/j.foreco.2023.120989
    » https://doi.org/10.1016/j.foreco.2023.120989
  • Eiten, G., 1972. The cerrado vegetation of Brazil. Bot. Rev 38, 201-341. https://doi.org/10.1007/BF02859158
    » https://doi.org/10.1007/BF02859158
  • Fajrini, R., 2022. Environmental harm and decriminalization of traditional slash-and-burn practices in Indonesia. International Journal for Crime, Justice and Social Democracy 11, 28-43. https://doi.org/10.3316/informit.379398893195786
    » https://doi.org/10.3316/informit.379398893195786
  • Ferreira, L., 2002. Periodicidade do crescimento e formação da madeira de algumas espécies arbóreas de florestas estacionais semidecíduas da região sudeste do estado de São Paulo. (text). Universidade de São Paulo. https://doi.org/10.11606/D.11.2002.tde-15082002-154339
    » https://doi.org/10.11606/D.11.2002.tde-15082002-154339
  • Fritts, H., 2012. Tree Rings and Climate. Elsevier.
  • Godin, C., Caraglio, Y., Costes, E., 1997. Exploring plant topological structure with the AMAPmod software: an outline. Silva Fenn. 31. https://doi.org/10.14214/sf.a8533
    » https://doi.org/10.14214/sf.a8533
  • Guédon, Y., Caraglio, Y., Heuret, P., Lebarbier, E., Meredieu, C., 2007. Analyzing growth components in trees. Journal of Theoretical Biology 248, 418-447. https://doi.org/10.1016/j.jtbi.2007.05.029
    » https://doi.org/10.1016/j.jtbi.2007.05.029
  • Heuret, P., Barthélémy, D., Guédon, Y., Coulmier, X., Tancre, J., 2002. Synchronization of growth, branching and flowering processes in the South American tropical tree Cecropia obtusa (Cecropiaceae). American Journal of Botany 89, 1180-1187. https://doi.org/10.3732/ajb.89.7.1180
    » https://doi.org/10.3732/ajb.89.7.1180
  • ICMBio, I.C.M. de C. da B., 2014. Plano de Manejo Estação EcológicaSerra Geral do Tocantins.
  • INMET, I.N. de M., 2022. *Normais Climatológicas do Brasil 1991-2020* [Climate Normals for Brazil 1991-2020].
  • INMET, I.N. de M., 2019. Dados históricos anuais.
  • Laurance, W.F., Nascimento, H.E.M., Laurance, S.G., Andrade, A.C., Fearnside, P.M., Ribeiro, J.E.L., Capretz, R.L., 2006. RAIN FOREST FRAGMENTATION AND THE PROLIFERATION OF SUCCESSIONAL TREES. Ecology 87, 469-482. https://doi.org/10.1890/05-0064
    » https://doi.org/10.1890/05-0064
  • Levionnois, S., Tysklind, N., Nicolini, E., Ferry, B., Troispoux, V., Le Moguedec, G., Morel, H., Stahl, C., Coste, S., Caron, H., Heuret, P., 2023. Soil variation response is mediated by growth trajectories rather than functional traits in a widespread pioneer Neotropical tree. Peer Community Journal 3, e50. https://doi.org/10.24072/pcjournal.262
    » https://doi.org/10.24072/pcjournal.262
  • Marquardt, K., Milestad, R., Salomonsson, L., 2013. Improved fallows: a case study of an adaptive response in Amazonian swidden farming systems. Agric Hum Values 30, 417-428. https://doi.org/10.1007/s10460-012-9415-5
    » https://doi.org/10.1007/s10460-012-9415-5
  • Martinez-Ramos, M., Alvarez-Buylla, E., Sarukhan, J., Pinero, D., 1988. Treefall Age Determination and Gap Dynamics in a Tropical Forest. Journal of Ecology 76, 700-716. https://doi.org/10.2307/2260568
    » https://doi.org/10.2307/2260568
  • Maurent, E., Hérault, B., Piponiot, C., Derroire, G., Delgado, D., Finegan, B., Kientz, M.A., Amani, B.H.K., Bieng, M.A.N., 2023. A common framework to model recovery in disturbed tropical forests. Ecological Modelling 483, 110418. https://doi.org/10.1016/j.ecolmodel.2023.110418
    » https://doi.org/10.1016/j.ecolmodel.2023.110418
  • Mikich, S.B., Silva, S.M., 2001. Composição florística e fenologia das espécies zoocóricas de remanescentes de floresta estacional semidecidual no centro-oeste do Paraná, Brasil. Acta Bot. Bras. 15, 89-113. https://doi.org/10.1590/S0102-33062001000100010
    » https://doi.org/10.1590/S0102-33062001000100010
  • Mistry, J., 2000. World savannas: ecology and human use. Prentice Hall, Harlow, England ; New York.
  • Nardoto, G.B., Souza, M.P., Franco, A.C., 1998. Estabelecimento e padrões sazonais de produtividade de Kielmeyera coriacea (Spr) Mart. nos cerrados do Planalto Central: efeitos do estresse hídrico e sombreamento. Brazilian Journal of Botany 21. https://doi.org/10.1590/S0100-84041998000300011
    » https://doi.org/10.1590/S0100-84041998000300011
  • Naturatins, I.N. do T., 2003. Plano de manejo da área de proteção ambiental - APA Jalapão.
  • Neeff, T., Lucas, R.M., Santos, J.R. dos, Brondizio, E.S., Freitas, C.C., 2006. Area and Age of Secondary Forests in Brazilian Amazonia 1978-2002: An Empirical Estimate. Ecosystems 9, 609-623. https://doi.org/10.1007/s10021-006-0001-9
    » https://doi.org/10.1007/s10021-006-0001-9
  • Oldekop, J.A., Holmes, G., Harris, W.E., Evans, K.L., 2016. A global assessment of the social and conservation outcomes of protected areas. Conservation Biology 30, 133-141. https://doi.org/10.1111/cobi.12568
    » https://doi.org/10.1111/cobi.12568
  • Oliveira-Filho, A., Ratter, J.A., 2002. Vegetation Physiognomies and Woody Flora of the Cerrado Biome, The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. Columbia University Press, New York Chichester, West Sussex.
  • Oliveira-Filho, A.T., Ratter, J.A., 1995. A study of the origin of central brazilian forests by the analysis of plant species distribuition patters. Edinburgh Journal of Botany 52, 141-194.
  • Padoch, C., Pinedo-Vasquez, M., 2010. Saving Slash-and-Burn to Save Biodiversity: Saving Slash-and-Burn. Biotropica 42, 550-552. https://doi.org/10.1111/j.1744-7429.2010.00681.x
    » https://doi.org/10.1111/j.1744-7429.2010.00681.x
  • Pedroso Júnior, N.N., Murrieta, R.S.S., Adams, C., 2008. The slash-and-burn agriculture: a system in transformation. Boletim do Museu Paraense Emílio Goeldi. Ciências Humanas 3, 153-174. https://doi.org/10.1590/S1981-81222008000200003
    » https://doi.org/10.1590/S1981-81222008000200003
  • Pradal, C., Dufour-Kowalski, S., Boudon, F., Fournier, C., Godin, C., 2008. OpenAlea: a visual programming and component-based software platform for plant modelling. Functional Plant Biol. 35, 751-760. https://doi.org/10.1071/FP08084
    » https://doi.org/10.1071/FP08084
  • R Core Team, 2022. R: A Language and Environment for Statistical Computing.
  • Santos, J.D.O., Zchonski, F.L., Pilati, L., Gaglioti, A.L., Romaniuc-Neto, S., Da-Silva, P.R., 2020. Morphological and DNA analyses suggest the reinstatement of four synonymized Cecropia species. Tree Genetics & Genomes 16, 51. https://doi.org/10.1007/s11295-020-01445-z
    » https://doi.org/10.1007/s11295-020-01445-z
  • Shahabuddin, G., 2009. Emerging trends in protected area management, in: Asia-Pacific Forestry Commission. The Future of Forests in Asia and the Pacific: Outlook for 2020, The Future of Forests. Food and Agriculture Organization of the United Nations.
  • Sposito, T.C., Santos, F.A.M., 2001. Architectural patterns of eight Cecropia (Cecropiaceae) species of Brazil. Flora 196, 215-226. https://doi.org/10.1016/S0367-2530(17)30043-9
    » https://doi.org/10.1016/S0367-2530(17)30043-9
  • Sposito, T.C.S., 1999. Tamanho, forma, alometria e crescimento em algumas espécies de Cecropia (Cecropiaceae) do Brasil. (Tese de Doutorado). Universidade Estadual de Campinas (Unicamp), Campinas.
  • Treiber, E.L., Zalamea, P.-C., Torres, M.F., Madriñán, S., Weiblen, G.D., 2022. Molecular Systematics, Species Concepts, and Myrmecophytism in Cecropia (Cecropieae: Urticaceae): Insights from Restriction-Site Associated DNA. Systematic Botany 47, 457-466. https://doi.org/10.1600/036364422X16512564801605
    » https://doi.org/10.1600/036364422X16512564801605
  • Valle Junior, R.F., Varandas, S.G.P., Pacheco, F.A.L., Pereira, V.R., Santos, C.F., Cortes, R.M.V., Sanches Fernandes, L.F., 2015. Impacts of land use conflicts on riverine ecosystems. Land Use Policy 43, 48-62. https://doi.org/10.1016/j.landusepol.2014.10.015
    » https://doi.org/10.1016/j.landusepol.2014.10.015
  • WFO, 2025. Cecropia pachystachya Trécul.
  • Whitmore, T.C., 1990. An introduction to tropical rain forests. An introduction to tropical rain forests.
  • Zalamea, P.-C., Heuret, P., Sarmiento, C., Rodríguez, M., Berthouly, A., Guitet, S., Nicolini, E., Delnatte, C., Barthélémy, D., Stevenson, P.R., 2012. The Genus Cecropia: A Biological Clock to Estimate the Age of Recently Disturbed Areas in the Neotropics. PLOS ONE 7, e42643. https://doi.org/10.1371/journal.pone.0042643
    » https://doi.org/10.1371/journal.pone.0042643
  • Zalamea, P.-C., Sarmiento, C., Stevenson, P.R., Rodríguez, M., Nicolini, E., Heuret, P., 2013. Effect of rainfall seasonality on the growth of Cecropia sciadophylla: intra-annual variation in leaf production and node length. Journal of Tropical Ecology 29, 361-365. https://doi.org/10.1017/S0266467413000394
    » https://doi.org/10.1017/S0266467413000394
  • Zalamea, P.-C., Stevenson, P.R., Madriñán, S., Aubert, P.-M., Heuret, P., 2008. Growth pattern and age determination for Cecropia sciadophylla (Urticaceae). American Journal of Botany 95, 263-271. https://doi.org/10.3732/ajb.95.3.263
    » https://doi.org/10.3732/ajb.95.3.263
  • Zheng, H., Wang, Y., Chen, Y., Zhao, T., 2016. Effects of large-scale afforestation project on the ecosystem water balance in humid areas: An example for southern China. Ecological Engineering 89, 103-108. https://doi.org/10.1016/j.ecoleng.2016.01.013
    » https://doi.org/10.1016/j.ecoleng.2016.01.013

Submitted date:
07/18/2023

Accepted date:
02/12/2025

68dc240ca953955162405cf6 floram Articles

FLORAM

Share this page
Page Sections