Floresta e Ambiente
https://www.floram.org/article/doi/10.1590/2179-8087-FLORAM-2024-0018
Floresta e Ambiente
Original Article Forest Products Science and Tecnology

Research of the Properties of Plywood Based on Urea-Formaldehyde Binder with the Added Multi-Wall Carbon Nanotubes

Konstantin Zhuzhukin, Larisa Belchinskaya, Ekaterina Yushchenko, Elena Tomina, Alexander Tretyakov

Downloads: 1
Views: 471

Abstract

The work proposes the use of multi-walled carbon nanotubes in various concentrations treated in nitric acid (f-MWCNT) as a filler for urea-formaldehyde resin to produce birch plywood with improved physical-mechanical, water-resistant and thermal properties. The MWCNTs were characterized using transmission electron microscopy, IR and Raman spectroscopy, and the zeta potential was determined. The thermal stability of plywood on the UFR/f-MWCNT adhesive composition was assessed and a higher thermal stability of plywood was revealed when a nanofiller was added to the resin. The modulus of rupture increased by 62.7% and the modulus of elasticity by 113% with the addition of 1.5% f-MWCNT. A decrease in water absorption was established by 43%. A steady decrease in the emission of free formaldehyde from plywood was determined. The possibility of intermolecular interaction between the functional groups of f-MWCNT and urea-formaldehyde resins has been established.

Keywords

multi-walled carbon nanotubes; plywood; urea-formaldehyde resin; strength; heat resistance; formaldehyde emissions

References

  • Arya S, Chauhan S, Kumar R. Plastic bonded plywood using waste polypropylene container. Mater Today Proc. 2022;67:471-7.

  • Ashori A, Ayrilmis N, Heydari V. Enhancing interfacial adhesion through coupling agent incorporation in plywood/ plastic waste composite materials. Int J Adhes Adhes. 2023;127:103513.

  • Auriga R, Gumowska A, Szymanowski K, Wronka A, Robles E, Ocipka P, Kowaluk G. Performance properties of plywood composites reinforced with carbon fibers. Compos Struct. 2020;248:112533.

  • Ayrilmis N, Lee Y-K, Kwon JH, Han T-H, Kim H-J. Formaldehyde emission and VOCs from LVLs produced with three grades of urea-formaldehyde resin modified with nanocellulose. Build Environ. 2016;97:82-7.

  • Castanié B, Peignon A, Marc C, Eyma F, Cantarel A, Serra J, Curti R, Hadiji H, Denaud L, Girardon S, Marcon B. Wood and plywood as eco-materials for sustainable mobility: A review. Compos Struct . 2024;329:117790.

  • Chen S, Cheng C. Determination of gaseous formaldehyde by derivatization using magnetic multiwalled carbon nanotubes (MWCNTs) modified with 2,4-dinitrophenylhydrazine (DNPH) and high-performance liquid chromatography - ultraviolet detection (HPLC-UV). Instrum Sci Technol. 2022;50(2):174-89.

  • Ding Z, Ding Z, Liu J, Xie Y, Yang F. Derivative thermogravimetric analysis curve for characterizing the curing process of urea-formaldehyde resins. Int J Adhes Adhes . 2022;117:103184.

  • Dong C, Yang Y, Yuan C, Bai X, Guo Z. Effects of anisotropy of lignum vitae wood on its tribological performances. Compos B Eng. 2022;228:109426.

  • Dorieh A, Ayrilmis N, Farajollah Pour M, Ghafari Movahed S, Valizadeh Kiamahalleh M, Shahavi MH, Hatefnia H, Mehdinia M. Phenol formaldehyde resin modified by cellulose and lignin nanomaterials: Review and recent progress. Int J Biol Macromol. 2022;222:1888-907.

  • Dorieh A, Selakjani PP, Shahavi MH, Pizzi A, Ghafari Movahed S, Farajollah Pour M, Aghaei R. Recent developments in the performance of micro/nanoparticle-modified urea-formaldehyde resins used as wood-based composite binders: A review. Int J Adhes Adhes . 2022;114:103106.

  • Esmaeili N, Zohuriaan-Mehr MJ, Mohajeri S, Kabiri K, Bouhendi H. Hydroxymethyl furfural-modified urea-formaldehyde resin: synthesis and properties. European Journal of Wood and Wood Products. 2017;75(1):71-80.

  • Golubewa LN, Kulahava TA, Leonik YuS, Shuba M V., Semenkova GN. Application of Raman Spectroscopy for Studying the Mechanisms of Neutrophil Activation by Carbon Nanotubes. J Appl Spectrosc. 2021;88(1):77-84.

  • Gonçalves FAMM, Santos M, Cernadas T, Alves P, Ferreira P. Influence of fillers on epoxy resins properties: a review. J Mater Sci. 2022;57(32):15183-212.

  • Gul W, Alrobei H, Shah SRA, Khan A, Hussain A, Asiri AM, Kim J. Effect of Embedment of MWCNTs for Enhancement of Physical and Mechanical Performance of Medium Density Fiberboard. Nanomaterials. 2020;11(1):29.

  • Hasany SF, Abdurahman NH, Sunarti AR, Kumar A. Non-Covalent Assembly of Maghemite-Multiwalled Carbon Nanotubes for Efficient Lead Removal from Aqueous Solution. Aust J Chem. 2013;66(11):1440.

  • Hsu F-Y, Hung K-C, Xu J-W, Liu J-W, Wu Y-H, Chang W-S, Wu J-H. Analyzing the impact of veneer layup direction and heat treatment on plywood strain distribution during bending load by digital image correlation (DIC) technique. Journal of Materials Research and Technology. 2023;27:5257-65.

  • Iftikhar S, Shah PM, Mir MS. Potential Application of Various Nanomaterials on the Performance of Asphalt Binders and Mixtures: A Comprehensive Review. International Journal of Pavement Research and Technology. 2023;16(6):1439-67.

  • Kandhola G, Park S, Lim J-W, Chivers C, Song YH, Chung JH, Kim J, Kim J-W. Nanomaterial-Based Scaffolds for Tissue Engineering Applications: A Review on Graphene, Carbon Nanotubes and Nanocellulose. Tissue Eng Regen Med. 2023;20(3):411-33.

  • Karkush MO, Almurshedi AD, Karim HH. Investigation of the Impacts of Nanomaterials on the Micromechanical Properties of Gypseous Soils. Arab J Sci Eng. 2023;48(1):665-75.

  • Karri R, Lappalainen R, Tomppo L, Yadav R. Bond quality of poplar plywood reinforced with hemp fibers and lignin-phenolic adhesives. Composites Part C: Open Access. 2022;9:100299.

  • Kawalerczyk J, Dziurka D, Mirski R, Siuda J. The reduction of adhesive application in plywood manufacturing by using nanocellulose‐reinforced urea‐formaldehyde resin. J Appl Polym Sci. 2021;138(7).

  • Kim M, Park B-D. Effects of molecular weight of urea-formaldehyde resins on wettability and adhesion at wood surface, interphase, and plywood. Wood Sci Technol. 2022;56(6):1675-703.

  • Kumar A, Gupta A, Sharma KV. Thermal and mechanical properties of urea-formaldehyde (UF) resin combined with multiwalled carbon nanotubes (MWCNT) as nanofiller and fiberboards prepared by UF-MWCNT. Holzforschung. 2015a;69(2):199-205.

  • Kumar A, Gupta A, Sharma KV. Thermal and mechanical properties of urea-formaldehyde (UF) resin combined with multiwalled carbon nanotubes (MWCNT) as nanofiller and fiberboards prepared by UF-MWCNT. Holzforschung . 2015b;69(2):199-205.

  • Kumar A, Sharma K V., Gupta A, Tywoniak J, Hajek P. Optimization of processing parameters of medium density fiberboard using response surface methodology for multiwalled carbon nanotubes as a nanofiller. European Journal of Wood and Wood Products . 2017;75(2):203-13.

  • Li C, Ye L, Zhao X. In situ preparation of intrinsic flame-retardant urea formaldehyde/carbon nanotubes nanocomposite foam: structure and reinforcing mechanism. Polymer-Plastics Technology and Materials. 2020;59(15):1640-53.

  • Li J, Lyu Y, Li C, Zhang F, Li K, Li X, Li J, Kim K-H. Development of strong, tough and flame-retardant phenolic resins by using Acacia mangium tannin-functionalized graphene nanoplatelets. Int J Biol Macromol . 2023;227:1191-202.

  • Lin Q, Yang G, Liu J, Rao J. Property of nano-SiO2/urea formaldehyde resin. Frontiers of Forestry in China. 2006;1(2):230-7.

  • Liu Y, Zhu X. Measurement of formaldehyde and VOCs emissions from wood-based panels with nanomaterial-added melamine-impregnated paper. Constr Build Mater. 2014;66:132-7.

  • ŁUKAWSKI D, GRZEŚKOWIAK W, DUKARSKA D, MAZELA B, LEKAWA-RAUS A, DUDKOWIAK A. THE INFLUENCE OF SURFACE MODIFICATION OF WOOD PARTICLES WITH CARBON NANOTUBES ON PROPERTIES OF PARTICLEBOARD GLUED WITH PHENOL-FORMALDEHYDE RESIN. Drewno Prace Naukowe, Doniesienia, Komunikaty = Wood Research Papers, Reports, Announcements. 2019;62(203):93-105.

  • Łukawski D, Hochmańska-Kaniewska P, Bałęczny W, Martin A, Janiszewska-Latterini D, Lekawa-Raus A. Phenol-formaldehyde resin enriched with graphene nanoplatelets as an electroconductive adhesive for wood composites. Int J Adhes Adhes . 2024;132:103678.

  • Lykidis C. Formaldehyde Emissions from Wood-Based Composites: Effects ofNanomaterials . In: Emerging Nanomaterials . Cham: Springer International Publishing; 2023. p. 337-60.

  • Mayer AK, Vellguth N, Brinker S, Sauerbier P, Mai C. Surface modification of basalt used for reinforcement of wood-based panels. Prog Org Coat. 2024;190:108388.

  • Mazaheri M, Moghimi H, Taheri RA. Urea impregnated multiwalled carbon nanotubes; a formaldehyde scavenger for urea formaldehyde adhesives and medium density fiberboards bonded with them. J Appl Polym Sci . 2022;139(1).

  • Mirski R, Dukarska D, Derkowski A, Czarnecki R, Dziurka D. By-products of sawmill industry as raw materials for manufacture of chip-sawdust boards. Journal of Building Engineering. 2020;32:101460.

  • Natarelli CVL, Lemos ACC, de Assis MR, Tonoli GHD, Trugilho PF, Marconcini JM, de Oliveira JE. Sulfonated Kraft lignin addition in urea-formaldehyde resin. J Therm Anal Calorim. 2019;137(5):1537-47.

  • Oktay S, Kızılcan N, Bengu B. Oxidized cornstarch - Urea wood adhesive for interior particleboard production. Int J Adhes Adhes . 2021;110:102947.

  • Pędzik M, Janiszewska D, Rogoziński T. Alternative lignocellulosic raw materials in particleboard production: A review. Ind Crops Prod. 2021;174:114162.

  • Pramreiter M, Nenning T, Huber C, Müller U, Kromoser B, Mayencourt P, Konnerth J. A review of the resource efficiency and mechanical performance of commercial wood-based building materials. Sustainable Materials and Technologies. 2023;38:e00728.

  • Rohumaa A, Kallakas H, Mäetalu M, Savest N, Kers J. The effect of surface properties on bond strength of birch, black alder, grey alder and aspen veneers. Int J Adhes Adhes . 2021;110:102945.

  • Samaržija-Jovanović S, Jovanović V, Konstantinović S, Marković G, Marinović-Cincović M. Thermal behavior of modified urea-formaldehyde resins. J Therm Anal Calorim . 2011;104(3):1159-66.

  • Sanghvi MR, Tambare OH, More AP. Performance of various fillers in adhesives applications: a review. Polymer Bulletin. 2022;79(12):10491-553.

  • Sankar A, Sajan S. Manufacturing of high strength plywood composites reinforced with copper fibers. Mater Today Proc . 2021;47:5255-9.

  • Sun J-T, Li J-W, Tsou C-H, Pang J-C, Chung R-J, Chiu C-W. Polyurethane/Nanosilver-Doped Halloysite Nanocomposites: Thermal, Mechanical Properties, and Antibacterial Properties. Polymers (Basel). 2020;12(11):2729.

  • Tsvetkov VE, Macneva OP, Kovalenko M V., Yakobashvili VD. Waterproof Plywood Based on Aminoformaldehyde Resin of AFK-8 Brand. Polymer Science, Series D. 2023;16(1):40-2.

  • Wang T, Wang Y, Crocetti R, Wålinder M. In-plane mechanical properties of birch plywood. Constr Build Mater . 2022;340:127852.

  • Wang Y, Wang T, Persson P, Hedlund P, Crocetti R, Wålinder M. Birch plywood as gusset plates in glulam frame via mechanical connectors: A combined experimental and numerical study. Journal of Building Engineering . 2023;65:105744.

  • Wei Z, Kong X, Jia B, Xia S, Han S. MUF resin incorporating SiO2 and TiO2 nanoparticles: characterization and performance as a plywood adhesive. European Journal of Wood and Wood Products . 2023;

  • Xu H, Zhang X, Yu Y, Yu Y, Yang Z, Zhu X, Weng L. Enhancement of mechanical properties of epoxy resin matrix adhesives by high-performance fillers. Journal of Polymer Research. 2023;30(10):373.

  • Yu Y, Xu P, Chen C, Chang J, Li L. Formaldehyde emission behavior of plywood with phenol-formaldehyde resin modified by bio-oil under radiant floor heating condition. Build Environ . 2018;144:565-72.

  • Yuan GD, Theng BKG, Churchman GJ, Gates WP. Clays and Clay Minerals for Pollution Control. In 2013. p. 587-644.

  • Yun H, Guo Q, Hu CS, Tu DY. A Comparative Study of Free Formaldehyde Control Technology in Wood-Based Panels. Applied Mechanics and Materials. 2013;295-298:1149-53.

  • Zhao J, Feng S, Kou Z, Meissner F, Ruisinger U, Grunewald J. Characterization of hygrothermal properties of two wood species- the impact of anisotropy on their thermal and moisture behaviors. Constr Build Mater . 2023;398:132375.

  • Zhou X, Pizzi A, Du G. The Effect of Nanoclay on Melamine-Urea-Formaldehyde Wood Adhesives. J Adhes Sci Technol. 2012;26(10-11):1341-8.

  • Zhuzhukin K, Tomina E, Ponomarev A, Skudar D, Belchinskaya L, Grodetskaya T, Lukin A, Tretyakov A. Improving the Performance Properties of Impregnated Wood with its Subsequent Utilization into a Biochar Sorbent. Floresta e Ambiente. 2023;30(4).

  • Zykov S V., Dayneko D V. Forest Industry of Russia. Singapore: Springer Singapore; 2022.


Submitted date:
04/03/2024

Accepted date:
07/10/2024

66d73c15a953950203252162 floram Articles

FLORAM

Share this page
Page Sections