Floresta e Ambiente
https://www.floram.org/article/doi/10.1590/2179-8087-FLORAM-2024-0028
Floresta e Ambiente
Original Article Conservation of Nature

Soil Microbiological Attributes Under Different Vegetation Covers

Cristiane Figueira da Silva; Ingryd Cardoso Estaky Cabral; Gabriel Coutinho Oliveira de Lemos; Isabella Silva Lopes; Matheus Corrêa de Oliveira; Luiz Alberto da Silva Rodrigues Pinto; Marcelo Antoniol Fontes; Eliane Maria Ribeiro da Silva; Marcos Gervasio Pereira

Downloads: 0
Views: 241

Abstract

Abstract: The aim of the study was to characterize the microbiological activity of the soil and its relationship with soil attributes in a toposequence under different vegetation covers at the UFRRJ Botanical Garden. Soil samples were collected from the surface layer of the shoulder, backslope and footslope. These show little variation in slope, but have different vegetation cover. The shoulder and footslope are covered by tree species from different botanical families, and the middle third by grasses. The tree species (shoulder) and the grasses (backslope) showed higher values of microbial biomass carbon, soil enzyme activity, sporulation and species richness of arbuscular mycorrhizal fungi. The correlations found suggest the effect of chemical and physical attributes, especially the lower levels of P and coarse sand, on the increase in these soil microbiological attributes. Greater deposition of glomalin-related soil protein was observed in areas with tree species, with correlations with pH and TOC.

Keywords

Arbuscular mycorrhizal fungi, enzymatic activity, glomalin, soil microbial biomass, tree and grass species

References

AMF species list. Disponível em: https://docs.google.com/spreadsheets/d/1vHHj9XtfIYj9B60L7UP4rUci8bJeolUP/edit#gid=1484552018 . Acesso em 15/02/2024.

Anderson JPE, Domsch KH. The metabolic quotient of CO 2 (qCO 2 ) as a specific activity paramenter to assess the effects of environmental condition, such as pH, on the microbial of forest soil. Soil Biology and Biochemistry 1993; 25(3): 393-395. https://doi.org/10.1016/0038-0717(93)90140-7

Bargali SS. Soil microbial biomass: a crucual indicator of soil health. Current Agriculture Research Journal 2024; 12(1): 1-6. https://dx.doi.org/10.12944/CARJ.12.1.01

Bittar IMB, Ferreira AS, Correa GF. Influência da textura do solo na atividade microbiana, decomposição e mineralização do carbono de serapilheira de sítios do bioma cerrado sob condições de incubação. Bioscience Journal 2013; 29(6): 1952-1960.

Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Analytical Biochemistry1976; 72(1-2): 248–254. https://doi.org/10.1006/abio.1976.9999

Bremner JM, Mulvaney CS. Nitrogen total. In: Page AL, editor. Methods of soil analysis. Part 2. Madison: American Society of Agronomy; 1982.

Cusset E, Bennegadi-Laurent N, Recous S, Bernard P-Y, Perrin A-S, Tscheiller R, et al. Which soil microbial indicators should be included in routine laboratory tests to support the transition to sustainable management of arable farming systems? A meta-analysis. Ecological Indicators 2024; 167: 112706. https://doi.org/10.1016/j.ecolind.2024.112706

Davison J, Moora M, Oepik M, Adholeya A, Ainsaar L, Ba A, et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 2015; 349(6251): 970-973. https://doi.org/10.1126/science.aab1161

Driver JD, Holben WE, Rillig MC. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry 2005; 37(1): 101–106. https://doi.org/10.1016/j.soilbio.2004.06.011

Ferreira DA, Carneiro MAC, Saggin-Junior OJ. Fungos micorrízicos arbusculares em um latossolo vermelho sob manejos e usos no cerrado. Revista Brasileira de Ciência do Solo 2012; 36(1): 51-61. https://doi.org/10.1590/S0100-06832012000100006

Gerdemann JW, Nicolson TH. Spores ofmycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society 1963; 46 (2): 235-244. https://doi.org/10.1016/S0007-1536(63)80079-0

Gupta MM. Arbuscular Mycorrhizal Fungi: The Potential Soil Health Indicators. In: Giri B, Varma A. editores. Soil Health. Soil Biology: Springer, Cham.; 2020.

Isobe K, Aizawa E, Iguchi Y, Ishii R. Distribution of arbuscular mycorrhizal fungi in upland field soil of Japan: (1) relationship between spore density and soil environmental factor. Plant Production Science 2007; 10(1):122–8. ( https://doi.org/10.1626/pps.10.122 )

Jenkins WR. A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Disease Reporter 1964; 48(9): 692.

Khakpour O., Khara J. Spore density and root colonization by arbuscular mycorrhizal fungi in some species in Northwest of Iran. International Journal of Sciences: Basic and Applied Research 2012; 3: 977–982.

Kim K, Neuberger P, Daly EJ, Gorzelak M, Hernandez-Ramirez G. Arbuscular mycorrhizal fungi community linkages to soil nutriente availability across contrasting agroecosystems. Applied Soil Ecology 2022; 176: 104464. https://doi.org/10.1016/j.apsoil.2022.104464

Komilis D, Kontou I, Ntougias S. A modified static respiration assay and its relationship with an enzymatic test to assess compost stability and maturity. Bioresource Technology 2011; 102(10): 5863–5872. https://doi.org/10.1016/j.biortech.2011.02.021

Lima SS., Cabreira WV, Silva RG, Silva RM, Santos RN, Fernandes DAC, Pereira MG. Diversidade da fauna epígea sob diferentes coberturas vegetais no jardim botânico da UFRRJ. In: Silva-Matos RRS, Souza GMM, Costa ACS editores. Meio Ambiente com Sustentabilidade 2. Atena Editora; 2019. https://doi.org/10.22533/at.ed.4611901108

Liu C, Song Y, Dong X, Wang X, Ma X, Zhao G, Zang S. Soil enzyme activities and their relationships with soil C, N, and P in Peatlands from diferente types of Permafrost regions, Northeast China. Frontiers in Environmental Science 2021; 9:670769. https://doi.org/10.3389/fenvs.2021.670769

Liu, S, Wang Q, Qian L, Zhang B, Chen X., Hong H, et al. Mapping the scientific knowledge of glomalin-related soil protein with implications for carbon sequestration. Ecosystem Health and Sustainability 2022; 8(1): 2085185. https://doi.org/10.1080/20964129.2022.2085185

Loss A, Costa EM, Pereira MG, Beutler SJ. Agregação, matéria orgânica leve e carbono mineralizável em agregados do solo. Revista de la. Facultad Agronomia 2014; 113(1): 01-08.

Matos OS, Silva CF, Damian JM, Cerri CEP, Pereira MG, Zonta E. Beneficial services of Glomalin and Arbuscular Mycorrhizal fungi in degraded soils. Scientia Agrícola 2022; 79(5): e20210064. https://doi.org/10.1590/1678-992X-2021-0064

Mondal BP, Sekhon BS, Banerjee K, Sharma S, Setia RK, Das B et al. Spatial variability of soil microbiological properties under different land use systems. African Journal of Agricultural Research 2024; 20(9): 825-839. https://doi.org/10.5897/AJAR2024.16720

Maurya S, Abraham JS, Somasundaram S, Toteja R, Gupta R, Makhija S. Indicators for assessment of soil quality: a mini-review. Environmental Monitoring and Assessment 2020; 192(604): 1-22. https://doi.org/10.1007/s10661-020-08556-z

Nikaeen M, Nafez AH, Bina B, Nabavi BF, Hassanzadeh A. Respiration and enzymatic activities as indicators of stabilization of sewage sludge composting. Waste Management 2015; 39: 104-110. https://doi.org/10.1016/j.wasman.2015.01.028

Notaro KA, Medeiros EV, Duda GP, Moreira KA, Barros JÁ, Santos UJ et al. Enzymatic activity, microbial biomass and organic carbon of Entisols from Brazilian tropical dry forest and annual and perennial crops. Chilean Journal of Agricultural Research 2018; 78: 68-77, 2018. http://dx.doi.org/10.4067/S0718-58392018000100068

Petter FA, Leite LFC, Machado DM, Marimon Júnior, B. H., Lima LB, Freddi OS. Microbial biomass and organic matter in an oxisol under application of biochar. Bragantia 2019; 78: 109-118. https://doi.org/10.1590/1678-4499.2018237

Pinto LASR, Lima SS, Pereira MG, Ziviani MM, Assunção AS, Rossi CQ et al. Biomassa microbiana como indicador de qualidade do solo sob diferentes coberturas vegetais. In: Pachecco JTR, Kawanishi JY, Nascimento R. editores. Meio Ambiente com Sustentabilidade 2. Atena Editora; 2019.

Qin Z, Zhang H, Feng G, Christie P, Zhang J, Li X, Gai J. Soil phosphorus availability modifies the relationship between AM fungal diversity and mycorrhizal benefits to maize in an agricultural soil. Soil Biology and Biochemistry 2020; 144:107790. https://doi.org/10.1016/j.soilbio.2020.107790

Šarapatka B, Alvarado-Solano DP, Čižmár D. Can glomalin content be used as an indicator for erosion damage to soil and related changes in organic matter characteristics and nutrients? Catena 2019; 181: 104078. https://doi.org/10.1016/j.catena.2019.104078 Get rights and content

Schenck NC, Perez Y. Manual for identification of vesicular-arbuscular mycorrhizal fungi. Gainesville: INVAM; 1988.

Silva Junior JP, Cardoso EJBN. Micorriza arbuscular em cupuaçu e pupunha cultivados em sistema agroflorestal e em monocultivo na Amazônia Central. Pesquisa Agropecuaria Brasileira 2006; 41(5): 819-825. https://doi.org/10.1590/S0100-204X2006000500014

Silva CF, Pereira MG, Pinto LSR, Teodoro AS, Fontes MA, Gaia-Gomes JH et al. Soil attributes as indicators of the stabilization process of erosion in gullies at different formation stages in the southeast region of Brazil. Revista Ambiente e Água 2021; 16(4): e2632. https://doi.org/10.4136/ambi-agua.2632

Silva IR, Mello CMA, Ferreira Neto RA, Silva DKA, Melo AL, Oehl F, Maia LC. Diversity of arbuscular mycorrhizal fungi along na environmental gradient in the Brazilian semiarid. Applied Soil Ecology 2014; 84: 166-175. https://doi.org/10.1016/j.apsoil.2014.07.008

Tedesco MJ, Giancelo C, Bissani CA, Bohnen H, Volkweiss SJ. Análise de solo, plantas e outros materiais. 2ª ed. Porto Alegre: UFRGS; 1995.

Teixeira PC, Donagemma GK, Fontana A, Teixeira WG. Manual de Métodos de Métodos de Análise de Solo. 3ª ed. Brasília: Embrapa, 2017.

Wang Q, Wang W, Zhong Z, Wang H, Fu Y. Variation in glomalin in soil profiles and its association with climatic conditions, shelterbelt characteristics, and soil properties in poplar shelterbelts of Northeast China. Journal of Forestry Research 2020; 31: 279-290. https://doi.org/10.1007/s11676-019-00909-w

Wattenburger CJ, Gutknecht J, Zhang Q, Brutnell T., Hofmockel K, Halverson LJ. The rhizosphere and cropping system, but not arbuscular mycorrhizae, affect ammonia oxidizing archaea and bacteria abundances in two agricultural soils. Applied Soil Ecology 2020; 151: 103540. https://doi.org/10.1016/j.apsoil.2020.103540

Wright SF, Franke-Synder M, Morton JB, Upadhyaya A. Timecourse study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant and Soil 1996; 181:193–203. https://doi.org/10.1007/BF00012053

Wright SF, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil 1998; 198:97–107. https://doi.org/10.1023/A:1004347701584
 


Submitted date:
05/29/2024

Accepted date:
11/18/2024

67a9f210a9539574c105e453 floram Articles

FLORAM

Share this page
Page Sections