Spatial Analysis of Chemical and Textural Soil Attributes in a Multistrata Agroforestry System
Anelise Dias, Emanuel José Gomes de Araújo, Eduardo Vinicius da Silva, Pedro Vaz, Maryna Barbosa Ferreira, Thiago Lisboa Xavier, Rafaella de Angeli Curto
Abstract
The objective was to evaluate the spatial distribution of chemical and textural soil variables in a multistrata agroforestry system. A total of 73 georeferenced soil samples were collected at depths of 10-20 cm and 20-40 cm. The studied parameters were: pH H2O , potential acidity (H+Al), calcium (Ca 2+ ), magnesium (Mg 2+ ), aluminum (Al 3+ ), sodium (Na + ), potassium (K + ), phosphorus (P), organic carbon (C org ), cation exchange capacity (T-value), base saturation (V-value), total clay, total sand, and silt. Principal component analysis (PCA) was performed in R software using the FactoMineR and Factoextra packages. For variables with spatial dependence, ordinary kriging was performed using the best-fitted model. For variables without spatial dependence, inverse distance weighted (IDW) interpolation was applied (power = 2). The spherical model was the best fit for chemical attributes. IDW interpolation accurately mapped the textural attributes. It was concluded that geostatistics enabled a detailed analysis of chemical and textural attributes.
Keywords
References
-
Abhiyan WNT. Sustainable Development Goals: Agenda 2030. India 2017: A Civil Society Report. [cited 2017]. Available from: < https://www.kractivist.org/wp-content/uploads/2017/07/Civil-society-Report-on-SDGs.pdf >.
» https://www.kractivist.org/wp-content/uploads/2017/07/Civil-society-Report-on-SDGs.pdf -
Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrif, 2014; 22(6): 711-728.
-
Andrade AG, Caballero SSU, Faria SM de. Ciclagem de nutrientes em ecossistemas florestais. Rio de Janeiro: Embrapa Solos; 1999.
-
Araújo ASF, Melo WJ. Soil microbial biomass in organic farming system. Ciência Rural, 2010; 40(11): 2419-2426.
-
Araújo EJG, Lima DO, Curto RA, Silva EV, Arthur Júnior JC. Space pattern of forest species and its relationship with agricultural factors agroflorestal system. Floresta, 2019; 49(2), 335-344.
-
Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. 2 ed. New York: Springer; 2002.
-
Canuto JC. Sistemas Agroflorestais: experiências e reflexões. In: Vaz, P. Agroflorestas, clareiras e sustentabilidade. Brasília, DF: Embrapa; 2017.
-
Cambardella CA, Moorman TB, Novak JM, Parkin TB, Karlen DL, Turco RF et al. Field-Scale Variability of Soil Properties in Central Iowa Soils. Soil Science Society of America Journal, 1994; 58(5): 1501-1511.
-
Higuchi N, Santos J, Ribeiro RJ, Minette L, Biot Y. Biomassa da parte aérea da vegetação da floresta tropical úmida de terra-firme da Amazônia Brasileira. Acta Amazonica, 1998; 28(2): 153-166.
-
Hongyu K, Sandanielo VLM, Oliveira Junior GJ. Análise de Componentes Principais: resumo teórico, aplicação e interpretação. Engineering and Science, 2015; 1(5): 83- 90.
-
Iwata BF, Leite LFC, Araújo ASF, Nunes LAPL, Gehring C, Campos LP. Sistemas agroflorestais e seus efeitos sobre os atributos químicos em argissolo vermelho-amarelo do cerrado piauiense. Revista Brasileira de Engenharia Agrícola e Ambiental, 2012; 16(7): 730- 738.
-
Kassambara A, Mundt F. Extract and Visualize the Results of Multivariate Data Analyses. [cited 2017]. Available from: < https://CRAN.R-project.org/package=factoextra >
» https://CRAN.R-project.org/package=factoextra -
Lê S, Josse J, Husson F. FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software, 2008; 25(1): 1-18.
-
Navidi M N, Seyedmohammadi J. Mapping and spatial analysis of soil chemical effective properties to manage precise nutrition and environment protection. International Journal of Environmental Analytical Chemistry, 2022; 102(8): 1948-1961.
-
Pezarico CR, Vitorino ACT, Mercante FM, Daniel O. Indicadores de qualidade do solo em sistemas agroflorestais. Revista de Ciências Agrárias, 2013; 56(1): 40-47.
-
R Core Team. R: A language and environment for statistical computing.Vienna, Austria. R Foundation for Statistical Computing, 2015.
-
Ribeiro Júnior PJ, Diggle, PJ. GeoR: a package for geostatistical analysis. RNews, 2001; 1(2): 15-18.
-
Santos SEM, Miranda IS, Tourinho MM. Estimativa de biomassa de sistemas agroflorestais das várzeas do rio Juba, Cametá, Pará. Acta Amazonica, 2004; 36(1): 01-08.
-
Sen DOU, Shan J, Song X, CAO R, Wu M, Li C, Guan S. Are humic substances soil microbial residues or unique synthesized compounds? A perspective on their distinctiveness. Pedosphere, 2020; 30(2):159-167.
-
Seyedmohammadi J, Matinfar H R. Statistical and geostatistical techniques for geospatial modeling of soil cation exchange capacity. Communications in Soil Science and Plant Analysis, 2018; 49(18): 2301-2314.
-
Seyedmohammadi J, Navidi M N, Esmaeelnejad L. Geospatial modeling of surface soil texture of agricultural land using fuzzy logic, geostatistics and GIS techniques. Communications in Soil Science and Plant Analysis, 2019; 50(12): 1452-1464.
-
Sibaldelli RNR, Carvalho JFC, Oliveira MCN. Uso de Geoestatística no Estudo da Variabilidade Espacial da Capacidade de Troca de Cátions do Solo. Global Science and Technology, 2015, 8:141-156.
-
Silva CSD, Pereira MG, Delgado RC, Silva EV. Spatialization of soil chemical and physical attributes in an agroforestry system, Seropédica, Brazil. Cerne, 2016; 22(4): 407-414.
-
Steenbock W, Vezzani FM. Agrofloresta: aprendendo a produzir com a natureza. 1 ed. Curitiba: Bambual; 2013.
-
Uzêda MC, Tavares PD, Rocha FI, Alves RC. Paisagens agrícolas multifuncionais: Intensificação ecológica e segurança alimentar. 1 ed. Brasília: Embrapa; 2017.
-
Vale Júnior JF, Souza MIL, Nascimento PPRR, Cruz DLS. Solos da Amazônia: etnopedologia e desenvolvimento sustentável. Revista Agroambiente On-line, 2011; 5(2): 158-165.
Submitted date:
06/25/2024
Accepted date:
08/16/2024