Calcium and Silicon Precipitation in Pinus taeda Needles in Response to Soil Application of Cellulosic Residue
Julierme Zimmer Barbosa, Evelyn Joslin Mendes, Shizuo Maeda, Anne Luiz Sass, Eloa Araujo, Ederlan Magri, Stephen Arthur Prior, Antonio Carlos Vargas Motta
Abstract
The use of biosolids as a sustainable alternative in the management of planted Pinus taeda forests affects availability of nutrients and beneficial elements. Calcium (Ca) and Silicon (Si) play important roles in plant regulatory and protective systems; therefore, our objective was to use scanning electron microscopy combined with energy-dispersive spectroscopy (SEM-EDS) to analyze the accumulation of elements in P. taeda needles grown in soil that received 0 to 60 Mg ha-1 applications of cellulosic waste. Microanalyses of needle sections were performed using a SEM with elemental detection by EDS. Mapping mode allowed for detection and analysis of Ca, Si, and C distributions in needle sections. Calcium and Si precipitation occurred in needles, with Ca accumulating in the phloem and Si in the epidermal cells. Application of 60 Mg ha-1 changed the availability and accumulation of elements, which resulted in more Ca crystals and fewer Si crystals.
Keywords
Referências
- Alvares CA, Stape JL, Sentelhas PC, et al. Köppen’s climate classification map for Brazil. Meteorol Zeitschrift 2013; 22:711-728. https://doi.org/10.1127/0941-2948/2013/0507
» https://doi.org/10.1127/0941-2948/2013/0507 - Barbosa JZ, Constantino V, Zanette F, et al. Soil fertility affects elemental distribution in needles of the conifer Araucaria angustifolia: a microanalytical study. CERNE 2017; 23:257-266. https://doi.org/10.1590/0104776020172302313
» https://doi.org/10.1590/0104776020172302313 - Barbosa JZ, Motta AC V, Reis AR dos, et al. Spatial distribution of structural elements in leaves of Ilex paraguariensis: physiological and ecological implications. Trees 2020; 34:101-110. https://doi.org/10.1007/s00468-019-01900-y
» https://doi.org/10.1007/s00468-019-01900-y - Broadley M, Brown P, Cakmak I, et al. Marschner’s Mineral Nutrition of Higher Plants. Elsevier. 2012; 249-269
- Brown SL, Warwick NWM, Prychid CJ. Does aridity influence the morphology, distribution and accumulation of calcium oxalate crystals in Acacia (Leguminosae: Mimosoideae)? Plant Physiology and Biochemistry 2013; 73:219-228. https://doi.org/10.1016/j.plaphy.2013.10.006
» https://doi.org/10.1016/j.plaphy.2013.10.006 - Oliveira RK, Higa AR, Silva LD, et al. Emergy-based sustainability assessment of a loblolly pine (Pinus taeda) production system in southern Brazil. Ecological Indicators 2018; 93:481-489. https://doi.org/10.1016/j.ecolind.2018.05.027
» https://doi.org/10.1016/j.ecolind.2018.05.027 - Dinh N, van Der Ent A, Mulligan DR, Nguyen AV. Zinc and lead accumulation characteristics and in vivo distribution of Zn2+ in the hyperaccumulator Noccaea caerulescens elucidated with fluorescent probes and laser confocal microscopy. Environmental and Experimental Botany 2018; 147:1-12. https://doi.org/10.1016/j.envexpbot.2017.10.008
» https://doi.org/10.1016/j.envexpbot.2017.10.008 - Dobner M, Campoe OC. Meteorological effects on 30-years-grown Pinus taeda under a gradient of crown thinning intensities in southern Brazil. Forest Ecology and Management 2019; 453:117624. https://doi.org/10.1016/j.foreco.2019.117624
» https://doi.org/10.1016/j.foreco.2019.117624 - Embrapa. Manual de Métodos de Análise de Solo, 2nd edn. Embrapa Solos, Rio de Janeiro; 2011
- Fink S. Comparative microscopical studies on the patterns of calcium oxalate distribution in the needles of various conifer species. Botanica Acta 2019; 104:306-315. https://doi.org/10.1111/j.1438-8677.1991.tb00235.x
» https://doi.org/10.1111/j.1438-8677.1991.tb00235.x - Franceschi VR, Nakata PA. Calcium oxalate in plants: formation and function. Annual Review of Plant Biology 2005; 56:41-71. https://doi.org/10.1146/annurev.arplant.56.032604.144106
» https://doi.org/10.1146/annurev.arplant.56.032604.144106 - Gal A, Brumfeld V, Weiner S, Addadi L, Oron D. Certain biominerals in leaves function as light scatterers. Advanced Materials 2012; 24(10):OP77-OP83. https://doi.org/10.1002/adma.201104548
» https://doi.org/10.1002/adma.201104548 - Guerriero G, Stokes I, Valle N, et al. Visualising silicon in plants: histochemistry, silica sculptures and elemental imaging. Cells 2020; 9:1066. https://doi.org/10.3390/cells9041066
» https://doi.org/10.3390/cells9041066 - Hawkesford M, Horst W, Kichey T, et al. Marschner’s Mineral Nutrition of Higher Plants. Elsevier. 2012; 135-189
- He H, Bleby TM, Veneklaas EJ, et al. Morphologies and elemental compositions of calcium crystals in phyllodes and branchlets of Acacia robeorum (Leguminosae: Mimosoideae). Annals of Botany 2012; 109:887-896. https://doi.org/10.1093/aob/mcs004
» https://doi.org/10.1093/aob/mcs004 - He H, Veneklaas EJ, Kuo J, Lambers H. Physiological and ecological significance of biomineralization in plants. Trends in Plant Science 2014; 19(3):166-174. https://doi.org/10.1016/j.tplants.2013.11.002
» https://doi.org/10.1016/j.tplants.2013.11.002 - Hodson MJ, Sangster AG. Aluminium/silicon interactions in conifers. Journal of Inorganic Biochemistry 1999; 76:89-98. https://doi.org/10.1016/S0162-0134(99)00119-1
» https://doi.org/10.1016/S0162-0134(99)00119-1 - Hodson MJ, Sangster AG. X-ray microanalytical studies of mineral localization in the needles of white pine (Pinus strobus L.). Annals of Botany 2002; 89:367-374. https://doi.org/10.1093/aob/mcf052
» https://doi.org/10.1093/aob/mcf052 - Hodson MJ, Evans DE. Aluminium-silicon interactions in higher plants: an update. Journal of Experimental Botany 2020. 71(21):6719-6729. https://doi.org/10.1093/jxb/eraa024
» https://doi.org/10.1093/jxb/eraa024 - Karabourniotis G, Horner HT, Bresta P, Nikolopoulos D, Liakopoulos G. New insights into the functions of carbon-calcium inclusions in plants. New Phytologist 2020; 228(30):845-854. https://doi.org/10.1111/nph.16763
» https://doi.org/10.1111/nph.16763 - Khan MI, Pandith SA, Shah MA, Reshi ZA. Calcium oxalate crystals, the plant ‘Gemstones’: insights into their synthesis and physiological implications in plants. Plant and Cell Physiology. 2023; 64(10):1124-1138. https://doi.org/10.1093/pcp/pcad081
» https://doi.org/10.1093/pcp/pcad081 - Lawrie NS, Cuetos NM, Sini F, Salam AG, Ding H, Vancolen A, Nelson JM, Erkens RHJ, Perversi G. Systematic review on raphide morphotype calcium oxalate crystals in angiosperms. AoB Plants 2023; 15(4):1-16. https://doi.org/10.1093/aobpla/plad031
» https://doi.org/10.1093/aobpla/plad031 - Luyckx M, Lutts S, Hausman JF, Guerriero G. Silicon and plants: current knowledge and technological perspectives. Frontiers in Plant Science 2017; 23(8):411. https://doi.org/10.3389/fpls.2017.00411
» https://doi.org/10.3389/fpls.2017.00411 - Mandlik R, Thakral V, Raturi G, Shinde S, Nikolić M, Tripathi DK, Sonah H, Deshmukh R. Significance of silicon uptake, transport, and deposition in plants. Journal of Experimental Botany 2020; 71:6703-6718. https://doi.org/10.1093/jxb/eraa301
» https://doi.org/10.1093/jxb/eraa301 - Martins APL, Reissmann CB. Material vegetal e as rotinas laboratoriais nos procedimentos químicos-análiticos. Scientia Agraria 2007; 8:1. https://doi.org/105380/rsa.v8il.8336
» https://doi.org/105380/rsa.v8il.8336 - McLaren RG, Clucas LM, Speir TW, van Schaik AP. Distribution and movement of nutrients and metals in a Pinus radiata forest soil following applications of biosolids. Environmental Pollution 2007; 147:32-40. https://doi.org/10.1016/j.envpol.2006.08.027
» https://doi.org/10.1016/j.envpol.2006.08.027 - Montanha GS, Rodrigues ES, Marques JPR, De Almeida E, Dos Reis AR, Pereira de Carvalho HW. X-ray fluorescence spectroscopy (XRF) applied to plant science: challenges towards in vivo analysis of plants. Metallomics 2020; 12(2):183-192. https://doi.org/10.1039/c9mt00237e
» https://doi.org/10.1039/c9mt00237e - Motta ACV, Barbosa JZ, Consalter R, Reissmann CB. Nutrição e adubação da cultura de Pinus. In: Prado RM, Wadt PGS (eds) Nutrição e adubação de espécies florestais e palmeiras, 1st edn. FUNEP. Jaboticabal. 2014; 383-426
- Mvondo-She MA, Marais D. The investigation of silicon localization and accumulation in citrus. Plants 2019; 8:200. https://doi.org/10.3390/plants8070200
» https://doi.org/10.3390/plants8070200 - Nakata PA. Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Science 2003; 164(6):901-909. https://doi.org/10.1016/S0168-9452(03)00120-1
» https://doi.org/10.1016/S0168-9452(03)00120-1 - Niemiec M, Chowaniak M, Paluch Ł. Accumulation of chromium, aluminum, barium and arsenic in selected elements of a forest ecosystem in the Przedbabiogórskie Mountain Range in the Western Carpathians. Journal of Elementology 2017: 22(3). https://bibliotekanauki.pl/articles/958262.pdf
» https://bibliotekanauki.pl/articles/958262.pdf - Ortega Rodriguez DR, Andrade G de C, Bellote AFJ, Tomazello-Filho. Effect of pulp and paper mill sludge on the development of 17-year-old loblolly pine (Pinus taeda L.) trees in Southern Brazil. Forest Ecology Management 2018: 422:179-189. https://doi.org/10.1016/j.foreco.2018.04.016
» https://doi.org/10.1016/j.foreco.2018.04.016 - Paiva ÉAS. Are calcium oxalate crystals a dynamic calcium store in plants? New Phytologist 2019: 223:1707-1711. https://doi.org/10.1111/nph.15912
» https://doi.org/10.1111/nph.15912 - Pierantoni M. Functions and Properties of Calcium Oxalate, Calcium Carbonate and Silica Deposits in Leaves. The Weizmann Institute of Science. 2019. https://doi.org/10.34933/wis.000486
» https://doi.org/10.34933/wis.000486 - Pierantoni M, Tenne R, Brumfeld V, Kiss V, Oron D, Addadi L, Weiner S. Plants and light manipulation: the integrated mineral system in okra leaves. Advanced Science 2017; 4(5):1600416. https://doi.org/10.1002/advs.201600416
» https://doi.org/10.1002/advs.201600416 - Pongrac P, Baltrenaite E, Vavpetic P, et al. Tissue-specific element profiles in Scots pine (pinus sylvestris L.) needles. Trees 2019; 33:91-101. https://doi.org/10.1007/s00468-018-1761-5
» https://doi.org/10.1007/s00468-018-1761-5 - Pritchard SG, Prior SA, Rogers HH, Peterson CM. Calcium sulfate deposits associated with needle substomatal cavities of container grown longleaf pine (Pinus palustris). International Journal of Plant Science 2000; 161(6):917-923. https://doi.org/10.1086/317560
» https://doi.org/10.1086/317560 - Rabel D de O, Maeda S, Araujo EM, et al. Recycled alkaline paper waste influenced growth and structure of Pinus taeda L. forest. New Forests 2020; 52:249-270. https://doi.org/10.1007/s11056-020-09791-5
» https://doi.org/10.1007/s11056-020-09791-5 - Rocha JHT, du Toit B, Gonçalves JL de M. Ca and Mg nutrition and its application in Eucalyptus and Pinus plantations. For Ecol Manage 2019; 442:63-78. https://doi.org/10.1016/j.foreco.2019.03.062
» https://doi.org/10.1016/j.foreco.2019.03.062 - Rodrigues VDS, Motta ACV, Barbosa JZ, Ercole TM, Prior SA. Wood production and nutritional status of Pinus taeda L. in response to fertilization and liming: a meta-analysis of the Americas. iForest-Biogeosciences and Forestry 2023; 16(4):195-201. https://doi.org/10.3832/ifor4296-016
» https://doi.org/10.3832/ifor4296-016 - Mandlik R, Thakral V, Raturi G, Shinde S, Nikolić M, Tripathi DK, Sonah H, Deshmukh R. Significance of silicon uptake, transport, and deposition in plants. Journal of Experimental Botany 2020; 71(21):6703-6718, https://doi.org/10.1093/jxb/eraa301
» https://doi.org/10.1093/jxb/eraa301 - Sangster AG, Williams SE, Hodson MJ. Silica deposition in the needles of the Gymnosperms. II Scanning electron microscopy and X-ray microanalysis. In: Pinilla A, Juan-Tresserras J, Machado MJ (eds) The State-of-the-Art of Phytoliths in Soils and Plants. Centro de Ciencas Medioambientales, Madri. 1997; 135-146
- Sass AL, Bassaco MVM, Motta ACV, Maeda S, Barbosa JZ, Bognola IA, et al. Cellulosic industrial waste to enhance Pinus taeda nutrition and growth: a study in subtropical Brazil. Scientia Florestalis 2020; 48(126):e3165. https://doi.org/10.18671/scifor.v48n126.1
» https://doi.org/10.18671/scifor.v48n126.1 - Smith KT, Shortle WC, Connolly JH, Minocha R, Jellison J. Calcium fertilization increases the concentration of calcium in sapwood and calcium oxalate in foliage of red spruce. Environmental and Experimental Botany 2009; 67:277-283. https://doi.org/10.1016/j.envexpbot.2009.07.007
» https://doi.org/10.1016/j.envexpbot.2009.07.007 - Turpault MP, Calvaruso C, Dincher M, et al. Contribution of carbonates and oxalates to the calcium cycle in three beech temperate forest ecosystems with contrasting soil calcium availability. Biogeochemistry 2019; 146:51-70. https://doi.org/10.1007/s10533-019-00610-4
» https://doi.org/10.1007/s10533-019-00610-4 - Volk GM, Lynch-Holm VJ, Kostman TA, et al. The role of druse and raphide calcium oxalate crystals in tissue calcium regulation in Pistia stratiotes leaves. Plant Biol 2002; 4:34-45. https://doi.org/10.1055/s-2002-20434
» https://doi.org/10.1055/s-2002-20434 - Weiner S, Dove PM. An overview of biomineralization processes and the problem of the vital effect. Rev Mineral Geochemistry 2003; 54:1-29. https://doi.org/10.2113/0540001
» https://doi.org/10.2113/0540001 - Zargar SM, Mahajan R, Bhat JA, et al. Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. 3 Biotech 2019; 9:73. https://doi.org/10.1007/s13205-019-1613-z
» https://doi.org/10.1007/s13205-019-1613-z
Submetido em:
28/11/2024
Aceito em:
02/08/2025