Floresta e Ambiente
https://www.floram.org/article/doi/10.1590/2179-8087-FLORAM-2024-0056
Floresta e Ambiente
Original Article Forest Management

Line Sampling with Probability Proportional to The Geometrical Average Area Per Tree in The Stand

Sylvio Péllico Netto; Alexandre Behling ; Ataides Marinheski Filho; Ângelo Augusto Ebling ; Claiton Nardini

Downloads: 0
Views: 6

Abstract

Abstract: The study proposes a sampling method, termed the probability proportional to the average geometric area of occupation, method in which a set of trees along a row is selected as the sampling unit with a probability proportional to the geometrical average area per tree - PPGA. An experiment was conducted in Pinus taeda stands under three management regimes to compare estimates of density, basal area, and wood volume per hectare obtained from the proposed method and those from a conventional forest inventory. Additionally, the results were evaluated through sampling simulations using census data from Eucalyptus sp. stands. Sample estimators were developed based on PPGA within the sampling unit. Since the mean geometrical average area per tree varies among randomly distributed sampling units, the method is classified as probability proportional to size sampling and referred to as probability proportional to the average geometric area of occupation. The probability proportional to the average geometric area of occupation method proved effective across various ages and management conditions in both pine and eucalyptus stands.

Keywords

Forest inventory, regular geometric patterns, pine stand, eucalyptus stand, Euclidean distances

Referências

1. Assmann E. The principles of forest yield study. New York: Pergamon; 1970.

2. Bitterlich W. Die Winkelzählprobe. Allgemeine Forst-und Holzwirtschaftliche Zeitung 1948; 59: 4-5.

3. Buck ALB, Lingnau C, Machado ÁML, Péllico, S. Detecção de árvores em nuvens de pontos de varredura laser terrestre. Boletim de Ciências Geodésicas 2017;23(1):21-38.

4. Cottam G, Curtis JT. The use of distance measures in phytosociological sampling. Ecology 1956;37(3):451-460.

5. De Vries PG. Sampling theory for forest inventory: a teach-yourself course. New York: Spring Verlag; 1986.

6. Instituto Brasileiro de Geografia e Estatística – IBGE. SIRGAS2000: O Referencial Geocêntrico do Brasil. Ponto de Referência 2006; 1:1-28.

7. Johnson RA, Wichern DW. Applied multivariate statistical analysis. New Jersey: Prentice-Hall; 1988.

8. Péllico Netto S. Fator de correção para árvores marginais em métodos de amostragem com seleção probabilística proporcional a um tamanho. Revista Cerne 1994;1(1):73-77.

9. Péllico Netto S, Brena DA. Inventário Florestal. Editado pelos autores, Curitiba, Brasil; 1997.

10. Péllico Netto S, Stefanello FR, Pellissari AL, David HC. Mapping of sites in Forest stands. Anais da Academia Brasileira de Ciências 2014; 86(4):2025-2037.

11. Prodan M. Punktstichprobe für die forsteinrichtung. Der Forst-und Holzwirt 1968; 23(11):225-226.

12. Schöepfer W. Automatisierung dês massen, sorten und wertberechung stender waldbestande schriftenreihe bad. Berlin:Wurtt-Forstl 1966.

13. Smaltschinski T. Bestandesdichte und verteilungsstruktur. [Dissertation]. Universität Freiburg, Deutschland; 1981.

14. Stefanello FR Mapeamento de sítios com uso de amostragem sistemática. [Dissertação]. Universidade Federal do Paraná, Brazil; 1994.

15. Strand L. Sampling for volume along a line. Medd Nor Skogforsok 1958;51(11):327-331.

16. Spiegel MR. Theory and problems of statistics. McGraw-Hill, Rio de Janeiro, Brazil; 1972.
 


Submetido em:
01/12/2024

Aceito em:
01/02/2025

682e1109a953953bcc5c5535 floram Articles

FLORAM

Share this page
Page Sections