Floresta e Ambiente
https://www.floram.org/article/doi/10.1590/2179-8087.002719
Floresta e Ambiente
Original Article Conservation of Nature

Copper Accumulation and Distribution in Two Arboreal Species of the Atlantic Forest

Alessandro Reinaldo Zabotto; Wellma Santana França; Marisa Domingos; Mirian Cilene Spasiani Rinaldi; Shoey Kanashiro; Mauricio Lamano Ferreira; Armando Reis Tavares

Downloads: 0
Views: 864

Abstract

ABSTRACT: This study aimed to evaluate the accumulation and distribution of copper (Cu) in the pioneer tree Schinus terebinthifolius R. (aroeira) and non-pioneer tree Eugenia uniflora L. (pitanga) submitted to different concentrations of copper. The plants received 40 mL of Hoagland & Arnon (1950) n. 1 nutrient solution modified with 0.00032, 0.0032, 0.032 and 0.32 mM Cu2+ applied to the soil. We analyzed biomass, biometry and Cu contents in plants and the concentration of Cu in soil. Cu concentration in the soil contaminated with 0.32 mM Cu2+ was higher than other treatments. Neither species showed characteristics of plant phytotoxicity. However, the two species did exhibit different physiological responses to Cu; S. terebinthifolius accumulated the metal only in roots, while E. uniflora accumulated Cu in roots and leaves. The highest Cu concentration in soil was observed in the treatment with 0.32 mM Cu2+. Outstanding to foliar accumulation, E. uniflora could be used for biomonitoring.

Keywords

heavy metal, contamination, mineral nutrition, phytotoxicity

References

Argyraki A, Kelepertzis E, Botsou F, Paraskevopoulou V, Katsikis I, Trigoni M. Environmental availability of trace elements (Pb, Cd, Zn, Cu) in soil from urban, suburban, rural and mining areas of Attica, Hellas. Journal of Geochemical Exploration 2018; 187: 201-213. http://dx.doi.org/10.1016/j.gexplo.2017.09.004.

Büll LT, Bertani RMA. Métodos de análise química de solo para fins de fertilidade. Botucatu: UNESP/FCA; 2001.

Carvalho F, Tavares T, Lins L. Soil contamination by a lead smelter in Brazil in the view of the local residents. International Journal of Environmental Research and Public Health 2018; 15(10): 2166. http://dx.doi.org/10.3390/ijerph15102166. PMid:30279362.

Commission of the European Communities – CEC. Council directive on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Official Journal of the European Communities 1986;181: 6-12.

Companhia Ambiental do Estado de São Paulo – CETESB. Decisão de diretoria N° 045/2014/− Aprovação dos Valores Orientadores para Solos e Águas Subterrâneas no Estado de São Paulo. São Paulo: Secretaria do meio Ambiente; 2014.

Chaves LHG, Mesquita EF, Araujo DL, França CP. Crescimento, distribuição e acúmulo de cobre e zinco em plantas de pinhão-manso. Ciência Agronômica 2010; 41(2): 167-176. http://dx.doi.org/10.1590/S1806-66902010000200001.

DalCorso G, Manara A, Piasentin S, Furini A. Nutrient metal elements in plants. Metallomics 2014; 6(10): 1770-1788. http://dx.doi.org/10.1039/C4MT00173G. PMid:25144607.

Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA. Sistema brasileiro de classificação de solos. 3. ed. Brasília: Embrapa Informação Tecnológica; 2013.

Gomes MP, Marques TCLLSM, Nogueira MOG, Castro EM, Soares ÂM. Ecophysiological and anatomical changes due to uptake and accumulation of heavy metal in Brachiaria decumbens. Scientia Agrícola 2011; 68(5): 566-573. http://dx.doi.org/10.1590/S0103-90162011000500009.

Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. Berkeley: California Agricultural Experiment Station; 1950.

Ivanova EM, Kholodova VP, Kuznetsov VV. Biological effects of high copper and zinc concentrations and their interaction in rapeseed plants. Russian Journal of Plant Physiology: a Comprehensive Russian Journal on Modern Phytophysiology 2010; 57(6): 806-814. http://dx.doi.org/10.1134/S1021443710060099.

Kabata-Pendias A, Pendias H. Trace elements in soils and plants. Boca Raton: CRC Press; 2011.

Khan M, Scullion J. Effect of soil on microbial responses to metal contamination. Environmental Pollution 2000; 110(1): 115-125. http://dx.doi.org/10.1016/S0269-7491(99)00288-2. PMid:15092861.

Lange B, van der Ent A, Baker AJ, Echevarria G, Mahy G, Malaisse F et al. Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. The New Phytologist 2017; 213(2): 537-551. http://dx.doi.org/10.1111/nph.14175. PMid:27625303.

Livesley SJ, McPherson EG, Calfapietra C. The urban forest and ecosystem services: impacts on urban water, heat, and pollution cycles at the tree, street, and city scale. Journal of Environmental Quality 2016; 45(1): 119-124. http://dx.doi.org/10.2134/jeq2015.11.0567. PMid:26828167.

Malavolta E, Vitti GC, Oliveira SA. Avaliação do Estado Nutricional das Plantas: princípios e aplicações. 2. ed. Piracicaba: POTAFOS; 1997.

Nachtigall GR, Nogueirol RC, Alleoni LRF, Cambri MA. Copper concentration of vineyard soils as a function of pH variation and addition of poultry litter. Brazilian Archives of Biology and Technology 2007; 50(6): 941-948. http://dx.doi.org/10.1590/S1516-89132007000700005.

Panagos P, Ballabio C, Lugato E, Jones A, Borrelli P, Scarpa S et al. Potential sources of anthropogenic copper inputs to European agricultural soils. Sustainability 2018; 10(7): 2380. http://dx.doi.org/10.3390/su10072380.

Pätsikkä E, Kairavuo M, Šeršen F, Aro EM, Tyystjärvi E. Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Plant Physiology 2002; 129(3): 1359-1367. http://dx.doi.org/10.1104/pp.004788. PMid:12114589.

Petri L, Aragaki S, Gomes EPC. Management priorities for exotic plants in an urban Atlantic Forest reserve. Acta Botanica Brasílica 2018; 32(4): 631-641. http://dx.doi.org/10.1590/0102-33062017abb0317.

Reeves RD, Baker AJ, Jaffre T, Erskine PD, Echevarria G, Van Der Ent A. A global database for plants thathyperaccumulate metal andmetalloid trace elements. The New Phytologist 2017; 218(2): 407-411. http://dx.doi.org/10.1111/nph.14907. PMid:29139134.

Ricachenevsky FK, Araújo AT Jr, Fett JP, Sperotto RA. You shall not pass: root vacuoles as a symplastic checkpoint for metal translocation to shoots and possible application to grain nutritional quality. Frontiers of Plant Science 2018; 9: 412. http://dx.doi.org/10.3389/fpls.2018.00412. PMid:29666628.

Rodrigues SM, Cruz N, Coelho C, Henriques B, Carvalho L, Duarte AC et al. Risk assessment for Cd, Cu, Pb and Zn in urban soils: chemical availability as the central concept. Environmental Pollution 2012; 183: 234-242. http://dx.doi.org/10.1016/j.envpol.2012.10.006. PMid:23194645.

Ruyters S, Salaets P, Oorts K, Smolders E. Copper toxicity in soils under established vineyards in Europe: a survey. The Science of the Total Environment 2013; 443: 470-477. http://dx.doi.org/10.1016/j.scitotenv.2012.11.001. PMid:23220136.

Schoenlein-Crusius IH, Moreira CG, Bicudo DC. Aquatic Hyphomycetes in the Parque Estadual das Fontes do Ipiranga - PEFI, São Paulo, Brazil. Brazilian Journal of Botany 2009; 32(3): 411-426. http://dx.doi.org/10.1590/S0100-84042009000300003.

Soares CRFS, Accioly AMA, Marques TCLLSM, Siqueira JO, Moreira FMS. Acúmulo e distribuição de metais pesados nas raízes, caule e folhas de mudas de árvores em solo contaminado por rejeitos de indústria de zinco. Revista Brasileira de Fisiologia Vegetal 2001; 13(3): 302-315. http://dx.doi.org/10.1590/S0103-31312001000300006.

Soares CRFS, Siqueira JO, Carvalho JD, Moreira FMS, Grazziotti PH. Crescimento e nutrição mineral de Eucalyptus maculata e Eucalyptus urophylla em solução nutritiva com concentração crescente de cobre. Revista Brasileira de Fisiologia Vegetal 2000; 12(3): 213-225. http://dx.doi.org/10.1590/S0103-31312000000300005.

Vendruscolo D, Santana NA, Souto KM, Ferreira PAA, Melo GWB, Jacques RJS. Differential behavior of the summer cover crops in the absorption and translocation of copper. Ciência Rural 2018; 48(12): e20180005. http://dx.doi.org/10.1590/0103-8478cr20180005.

Verkleij JAC, Prast JE. Cadmium tolerance and co‐tolerance in Silene vulgaris (Moench.) Garcke [= S. cucubalus (L.) Wib.]. The New Phytologist 1989; 111(4): 637-645. http://dx.doi.org/10.1111/j.1469-8137.1989.tb02358.x.

Vince T, Szabó G, Csoma Z, Sándor G, Szabó S. The spatial distribution pattern of heavy metal concentrations in urban soils - a study of anthropogenic effects in Berehove, Ukraine. Cent. Open Geosciences 2014; 6(3): 330-343. http://dx.doi.org/10.2478/s13533-012-0179-7.
 

5e21f5480e88256c436d0101 floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections