Floresta e Ambiente
Floresta e Ambiente
Original Article Conservation of Nature

Climate Change Influencing the Potential Distribution of a Brazilian Savanna Indicator Species

Cristiano Rodrigues Reis; Marcelo Leandro Bueno; Lucas Fernandes Rocha; Lidia Gabriella Santos; Eric Bastos Gorgens

Downloads: 2
Views: 1419


ABSTRACT: The objective of this study was to model the potential effect of future climate change on the distribution of a tree species indicator of Cerrado. For the modeling, we used 488 occurrence points of the species and also bioclimatic variables corresponding to 2050 and 2070, for the more optimistic and pessimistic scenarios. All generated models were classified as consistent, getting an area under curve higher than 0.90. The current modeling of Connarus suberosus showed that 88% of the area with a high probability of species occurrence is inside the Cerrado domain. Future projections suggest losses in the environmental suitability area around 40.8% and 44.8% in the optimistic scenario, 61.6% and 81.6% in the pessimistic scenario considering 2050 and 2070, respectively. Furthermore, we found a tendency of the C. suberosus to move in the Atlantic Forest direction. This modeling is an alert that the C. suberosus will suffer from future climate change.


bioclimatic variable, Connarus suberosus, environmental suitability, Neotropical savanna, maximum entropy


Aguiar LMS, Bernard E, Ribeiro V, Machado RB, Jones G. Should I stay or should I go? Climate change effects on the future of Neotropical savannah bats. Global Ecology and Conservation 2016; 5: 22-33. http://dx.doi.org/10.1016/j.gecco.2015.11.011.

Aquino FG, Walter BMT, Ribeiro JF. Espécies vegetais de uso múltiplo em reservas legais de cerrado-Balsas, MA. Revista Brasileira de Biociências 2007; 5(S1): 147-149.

Buckeridge MS, Mortari LC, Machado MR. Respostas fisiológicas de plantas às mudanças climáticas: alterações no balanço de carbono nas plantas podem afetar o ecossistema? In: Rego GM, Negrelle RRB, Morellato LPC, editores. Fenologia - Ferramenta para conservação e manejo de recursos vegetais arbóreos. Colombo: Embrapa Florestas; 2007.

Bueno ML, Pennington RT, Dexter KG, Kamino LHY, Pontara V, Neves DM et al. Effects of quaternary climatic fluctuations on the distribution of Neotropical savanna tree species. Ecography 2016; 39(1): 1-12.

Buzatti RSO, Lemos-Filho JP, Bueno ML, Lovato MB. Multiple Pleistocene refugia in the Brazilian cerrado: evidence from phylogeography and climatic nichemodelling of two Qualea species (Vochysiaceae). Botanical Journal of the Linnean Society 2017; 185(3): 307-320. http://dx.doi.org/10.1093/botlinnean/box062.

Cáceres M, Legendre P, Moretti M. Improving indicator species analysis by combining groups of sites. Oikos 2010; 119(10): 1674-1684. http://dx.doi.org/10.1111/j.1600-0706.2010.18334.x.

Carignan V, Villard MA. Selecting indicator species to monitor ecological integrity: a review. Environmental Monitoring and Assessment 2002; 78(1): 45-61. http://dx.doi.org/10.1023/A:1016136723584. PMid:12197640.

Collevatti RG, Lima-Ribeira MS, Souza-Neto AC, Franco AA, Oliveira G, Terribile LC. Recovering the demographical History of a Brazilian Cerrado tree species Caryocar brasiliense: coupling ecological niche modeling and coalescent analyses. Natureza & Conservação 2012b; 10(2): 169-176. http://dx.doi.org/10.4322/natcon.2012.024.

Collevatti RG, Terribile LC, Lima-Ribeiro MS, Nabout JC, Oliveira G, Rangel TF et al. A coupled phylogeographical and species distribution modelling approach recovers the demographical history of a Neotropical seasonally dry forest tree species. Molecular Ecology 2012a; 21(23): 5845-5863. http://dx.doi.org/10.1111/mec.12071. PMid:23094833.

Collevatti RG, Terribile LC, Rabelo SG, Lima-Ribeiro MS. Relaxed random walk model coupled with ecological niche modeling unravel the dispersal dynamics of a Neotropical savanna tree species in the deeper Quaternary. Frontiers of Plant Science 2015; 6(1): 653. http://dx.doi.org/10.3389/fpls.2015.00653. PMid:26379681.

Community Earth System Model – CESM. CESM models [online]. 2017 [cited 2017 April] Available from: http://www.cesm.ucar.edu/models/ccsm4.0/

Cupertino-Eisenlohr MA, Vinícius-Silva R, Meireles LD, Eisenlohr PV, Meira-Neto JAA, Santos-Gonçalves AP. Stability or breakdown under climate change? A key group of woody bamboos will find suitable areas in its richness center. Biodiversity and Conservation 2017; 26(8): 1845-1861. http://dx.doi.org/10.1007/s10531-017-1332-x.

Dubuis A, Pottier J, Rion V, Pellissier L, Theurillat J, Guisan A. Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Diversity & Distributions 2011; 17(6): 1122-1131. http://dx.doi.org/10.1111/j.1472-4642.2011.00792.x.

Dufrêne M, Legendre P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 1997; 67(3): 345-366. http://dx.doi.org/10.2307/2963459.

Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006; 29(2): 129-151. http://dx.doi.org/10.1111/j.2006.0906-7590.04596.x.

Fernandes GW, Pedroni F, Sanchez M, Scariot A, Aguiar LMS, Ferreira G et al. Cerrado: em busca de soluções sustentáveis Rio de Janeiro: Vertentes Produções Artísticas; 2016.

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 2005; 25(15): 1965-1978. http://dx.doi.org/10.1002/joc.1276.

Instituto de Pesquisas Jardim Botânico do Rio de Janeiro – IPJBRJ. Flora do Brasil 2020 – em construção [online]. Rio de Janeiro: JBRJ; 2018 [cited 2018 Feb 22]. Available from: http://floradobrasil.jbrj.gov.br/

Klink CA, Machado RB. Conservation of the Brazilian Cerrado. Conservation Biology 2005; 19(3): 707-713. http://dx.doi.org/10.1111/j.1523-1739.2005.00702.x.

Lima JS, Ballesteros-Mejia L, Lima-Ribeiro MS, Collevatti RG. Climatic changes can drive the loss of genetic diversity in a Neotropical savanna tree species. Global Change Biology 2017; 23(11): 4639-4650. http://dx.doi.org/10.1111/gcb.13685. PMid:28295840.

Lorenzi H. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Vol 2. Nova Odessa: Plantarum; 2002.

Machado RB, Ramos-Neto MB, Pereira PGP, Caldas EF, Gonçalves DA, Santos NS et al. Estimativas de perda da área do Cerrado brasileiro. Brasília: Conservação Internacional; 2004.

Malcolm JR, Liu C, Neilson RP, Hansen L, Hannah L. Global warming and extinctions of endemic species from biodiversity hotspots. Conservation Biology 2006; 20(2): 538-548. http://dx.doi.org/10.1111/j.1523-1739.2006.00364.x. PMid:16903114.

Marini MA, Barbet-Massin M, Lopes LE, Jiguet F. Predicted climate-driven bird distribution changes and forecasted conservation conflicts in a neotropical savanna. Conservation Biology 2009; 23(6): 1558-1567. http://dx.doi.org/10.1111/j.1523-1739.2009.01258.x. PMid:19500118.

Matheus MT, Bacelar M, Oliveira SAS, Lopes JC. Morfologia de frutos, sementes e desenvolvimento pós-seminal de cabelo-de-negro: Connarus suberosus Planch. (Connaraceae). Cerne 2009; 15(4): 407-412.

Mendonça RC, Felfili JM, Walter BMT, Silva-Júnior MCS, Rezende AV, Filgueiras TS et al. Flora vascular do Bioma Cerrado: checklist com 12.356 espécies. In: Sano SM, Almeida SP, Ribeiro JF, editores. Cerrado: ecologia e flora. Planaltina: Embrapa Cerrados; 2008.

Miller J. Species distribution modeling. Geography Compass 2010; 4(6): 490-509. http://dx.doi.org/10.1111/j.1749-8198.2010.00351.x.

Moncrieff GR, Scheiter S, Langan L, Trabucco A, Higgins SI. The future distribution of the savannah biome: model-based and biogeographic contingency. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 2016; 371(1703): 1-10. PMid:27502376.

Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J. Biodiversity hotspots for conservation priorities. Nature 2000; 403(6772): 853-858. http://dx.doi.org/10.1038/35002501. PMid:10706275.

Nabout JC, Magalhães MR, Gomes MAA, Cunha HF. The impact of global climate change on the geographic distribution and sustainable harvest of Hancornia speciosa Gomes (Apocynaceae) in Brazil. Environmental Management 2016; 57(4): 814-821. http://dx.doi.org/10.1007/s00267-016-0659-5. PMid:26796699.

Nabout JC, Oliveira G, Magalhães MR, Carina TL, Almeida FAS. Global climate change and the production of “pequi” fruits (Caryocar brasiliense) in the Brazilian Cerrado. Natureza & Conservação 2011; 9(1): 55-60. http://dx.doi.org/10.4322/natcon.2011.006.

Ohlemüller R, Anderson BJ, Araújo MB, Butchart SH, Kudrna O, Ridgely RS et al. The coincidence of climatic and species rarity: high risk to small-range species from climate change. Biology Letters 2008; 4(5): 568-572. http://dx.doi.org/10.1098/rsbl.2008.0097. PMid:18664421.

Oliveira-Filho AT, Ratter JA. Vegetation physiognomies and woody flora of the Cerrado Biome. In: Oliveira PS, Marquis RJ, editores. The cerrados of Brazil: ecology and natural history of a neotropical savanna. New York: Columbia University Press; 2002. http://dx.doi.org/10.7312/oliv12042-007.

Oliveira-Filho AT. NeoTropTree – Flora arbórea da Região Neotropical: um banco de dados envolvendo biogeografia, diversidade e conservação [online]. Belo Horizonte: Universidade Federal de Minas Gerais; 2017 [cited 2017 Apr 10]. Available from: http://www.icb.ufmg.br/treeatlan/

Parry ML, Canziani OF, Palutikof JP, Van der Linden PJ, Hanson CE, editores. Climate change 2007: impacts, adaptation, and vulnerability – Contribution of working group II – 4th assessment report of the Intergovernmental Panel on Climate Change – IPCC. Cambridge: University Press; 2007.

Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 2007; 34(1): 102-117. http://dx.doi.org/10.1111/j.1365-2699.2006.01594.x.

Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecological Modelling 2006; 190(3-4): 231-259. http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026.

Phillips SJ. A brief tutorial on maxent [online]. 2017 [cited 2017 Apr 10] Available from: http://biodiversityinformatics.amnh.org/open_source/maxent/

Ribeiro JF, Walter BMT. As principais fitofisionomias do Bioma Cerrado. In: Sano SM, Almeida SP, Ribeiro JF, editores. Cerrado: ecologia e flora. Planaltina: Embrapa Cerrados; 2008.

Salazar LF, Nobre CA, Oyama MD. Climate change consequences on the biome distribution in tropical South America. Geophysical Research Letters 2007; 34(9): 1-6. http://dx.doi.org/10.1029/2007GL029695.

Sano EE, Rosa R, Brito JLS, Ferreira LG. Mapeamento semidetalhado do uso da terra do Bioma Cerrado. Pesquisa Agropecuária Brasileira 2008; 43(1): 153-156. http://dx.doi.org/10.1590/S0100-204X2008000100020.

Scarano FR, Ceotto P. Brazilian atlantic forest: impact, vulnerability, and adaptation to climate change. Biodiversity and Conservation 2015; 24(9): 2319-2331. http://dx.doi.org/10.1007/s10531-015-0972-y.

Silva AF, Rabelo MFR, Enoque MM. Diversidade de angiospermas e espécies medicinais de uma área de Cerrado. Revista Brasileira de Plantas Medicinais 2015; 17(4): 1016-1030. http://dx.doi.org/10.1590/1983-084x/14_115.

Silva JMC, Bates JM. Biogeographic patterns and conservation in the South American Cerrado: a tropical savanna hotspot: the Cerrado, which includes both forest and savanna habitats, is the second largest South American biome, and among the most threatened on the continent. Bioscience 2002; 52(3): 225-233. http://dx.doi.org/10.1641/0006-3568(2002)052[0225:BPACIT]2.0.CO;2.

Simon LM, Oliveira G, Barreto BS, Nabout JC, Rangel TFLVB, Diniz-Filho JAF. Effects of global climate changes on geographical distribution patterns of economically important plant species in Cerrado. Revista Árvore 2013; 37(2): 267-274. http://dx.doi.org/10.1590/S0100-67622013000200008.

Siqueira MF, Durigan G. Modelagem da distribuição geográfica de espécies lenhosas de cerrado no Estado de São Paulo. Revista Brasileira de Botanica. Brazilian Journal of Botany 2007; 30(2): 233-243. http://dx.doi.org/10.1590/S0100-84042007000200008.

Siqueira MF, Peterson AT. Consequences of global climate change for geographic distributions of Cerrado tree species. Biota Neotropica 2003; 3(2): 1-14. http://dx.doi.org/10.1590/S1676-06032003000200005.

Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J et al., editores. Climate change 2013: the physical science basis – Contribution of working group I – 5th assessment report of the Intergovernmental Panel on Climate Change IPCC. Cambridge: University Press; 2013.

Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC et al. Extinction risk from climate change. Nature 2004; 427(6970): 145-148. http://dx.doi.org/10.1038/nature02121. PMid:14712274.

Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A et al. Predicting global change impacts on plant species’ distributions: Future challenges. Perspectives in Plant Ecology, Evolution and Systematics 2008; 9(3-4): 137-152. http://dx.doi.org/10.1016/j.ppees.2007.09.004.

Werneck FP, Nogueira C, Colli GR, Sites JW Jr, Costa GC. Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. Journal of Biogeography 2012; 39(9): 1695-1706. http://dx.doi.org/10.1111/j.1365-2699.2012.02715.x.

Williams SE, Bolitho EE, Fox S. Climate change in Australian tropical rainforests: an impending environmental catastrophe. Proceedings. Biological Sciences 2003; 270(1527): 1887-1892. http://dx.doi.org/10.1098/rspb.2003.2464. PMid:14561301.

WORLDCLIM. Global climate data: free climate data for ecological modeling and GIS [online]. 2017 [cited 2017 Apr 10]. Available from: http://www.worldclim.org/

5d13a7c40e88250f325a3d54 floram Articles
Links & Downloads


Share this page
Page Sections