Floresta e Ambiente
https://www.floram.org/article/doi/10.1590/2179-8087.034318
Floresta e Ambiente
Original Article Silviculture

Does Crop-Livestock-Forest Systems Contribute to Soil Quality in Brazilian Savannas?

Leciana Menezes Souza Zago; Werther Pereira Ramalho; Samantha Caramori

Downloads: 1
Views: 1133

Abstract

ABSTRACT: In this paper we discuss the impact on conversion degraded pasture areas into an integrated crop, livestock and forest system (ICLFS). We collected 30 soil samples at 0-0.1 m depth in five agroforestry systems, degraded pasture and native areas along Brazilian Cerrado biome. We analyzed the influence of chemical variables on microbial biomass carbon and enzyme activity using multivariate statistic analysis. The land use explained only the variation of microbial biomass carbon and seasonality explained the variation in glycine aminopeptidase activity. The sample controls differ from the other soil areas due to their greater biological activity (MBC). The enzymatic indicators showed that the biological activity is lower in degraded pasture. It was observed that the ICLFS system had a positive effect on the microbial activity (MBC and soil enzyme) when compared to pasture. This reinforces the importance of adopting more sustainable practices to improve soil quality.

Keywords

agroforestry systems, forest quality control, forest soil

References

Allison SD, Vitousek PM. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology & Biochemistry 2005; 37(5): 937-944. http://dx.doi.org/10.1016/j.soilbio.2004.09.014.

Assis PCR, Stone LF, Medeiros JC, Madari BE, Oliveira JM, Wruck FJ. Physical attributes of soil in integrated crop-livestock-forest systems. Brazilian Journal of Agricultural Environmental Engineeering 2015; 19(4): 309-316.

Baldrian P, Valáskova V, Merhautová V, Gabriel J. Degradation of lignocellulose by Pleurotus ostreatus in the presence of copper, manganese lead and zinc. Research in Microbiology 2005; 156(5-6): 670-676. http://dx.doi.org/10.1016/j.resmic.2005.03.007. PMid:15921894.

Borowik A, Wyszkowska J. Soil moisture as a factor affecting the microbiological and biochemical activity of soil. Plant, Soil and Environment 2016; 62(6): 250-255. http://dx.doi.org/10.17221/158/2016-PSE.

Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD et al. Soil enzymes in changing environment: current knowledge and future directions. Soil Biology & Biochemistry 2013; 58: 216-234. http://dx.doi.org/10.1016/j.soilbio.2012.11.009.

Empresa Brasileira de Pesquisa Agropecuária – Embrapa. Manual de método de análise de solo. 2. ed. Brasília: Embrapa Solos; 2011.

Empresa Brasileira de Pesquisa Agropecuária – Embrapa. Sistema brasileiro de classificação de solos. 3. ed. Brasília: Embrapa Solos; 2013.

Ferreira AS, Camargo FAO, Vidor C. Utilização de micro-ondas na avaliação da biomassa microbiana do solo. Brazilian Journal of Soil Science 1999; 23: 991-996.

Iwata BF, Leite LFC, Araújo ASF, Nunes LAPL, Gehring C, Campos LP. Agroforestry systems and its effects on chemical attributes of an Ultisol in the ‘Cerrado’ of Piaui state, Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental 2012; 16(7): 730-738. http://dx.doi.org/10.1590/S1415-43662012000700005.

Klink CA, Machado RB. Conservation of the Brazilian Cerrado. Conservation Biology 2005; 19(3): 707-713. http://dx.doi.org/10.1111/j.1523-1739.2005.00702.x.

Lemaire G, Franzluebbers A, Carvalho PCF, Dedieu B. Integrated crop-livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agriculture, Ecosystems & Environment 2014; 190(1): 4-8. http://dx.doi.org/10.1016/j.agee.2013.08.009.

Marklein AR, Houlton BZ. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. The New Phytologist 2012; 193(3): 696-704. http://dx.doi.org/10.1111/j.1469-8137.2011.03967.x. PMid:22122515.

Martins JR, Fernandes LA, Oliveira ALG, Sampaio RA, Frazão LA. Soil microbial attributes under agroforestry systems in the cerrado of Minas Gerais. Floresta e Ambiente 2018; 25(1): e20160476. http://dx.doi.org/10.1590/2179-8087.047616.

Mukherjee A, Zimmerman AR. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma 2013; 193–194: 122-130. http://dx.doi.org/10.1016/j.geoderma.2012.10.002.

Myers N, Mittermeier RA, Mittermeier CG, Fonseca GA, Kent J. Biodiversity hotspots for conservation priorities. Nature 2000; 403(6772): 853-858. http://dx.doi.org/10.1038/35002501. PMid:10706275.

Nahas E. Control of acid phosphatases expression from aspergillus niger by soil characteristics. Brazilian Archives of Biology and Technology 2015; 58(5): 658-666. http://dx.doi.org/10.1590/S1516-89132015050485.

Neal AL, Rossmann M, Brearley C, Akkari E, Guyomar C, Clark IM et al. Land-use influences phosphatase gene microdiversity in soils. Environmental Microbiology 2017; 19(7): 2740-2753. http://dx.doi.org/10.1111/1462-2920.13778. PMid:28447381.

Ozório RML, Azevedo DB. Experts’ perceptions to climate changes: agriculture-stock-raising-forest integration as sustainable alternative for the production of food, fibers and energy in agribusiness. Revista em Agronegócio e Meio Ambiente 2014; 7(2): 257-278.

R Core Team. R: A language and environment for statistical computing [online]. Vienna: R Foundatiton for Statistical Computing; 2017 [cited 2018 Apr 10]. Available from: https://www.R-project.org/

Reed HE, Blair JM, Wall DH, Seastedt TR. Impacts of management legacies on litter decomposition in response to reduced precipitation in a tallgrass prairie. Applied Soil Ecology 2009; 42(2): 79-85. http://dx.doi.org/10.1016/j.apsoil.2009.01.009.

Schmidt R, Gravuer K, Bossange AV, Mitchell J, Scow K. Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil. PLoS One 2018; 13(2): e0192953. http://dx.doi.org/10.1371/journal.pone.0192953. PMid:29447262.

Sousa ED. Soil microbial biomass in a no-tillage integrated crop-livestock system under different grazing intensities. Revista Brasileira de Ciência do Solo 2010; 34(1): 79-88.

Souza ED, Carneiro MAC, Paulino HB, Silva CA, Buzetti S. Fraçoes do carbon orgânico, biomassa e atividade microbiana em um Latossolo Vermelho sob Cerrado submetido a diferentes sistemas de manejos e usos do solo. Acta Scientiarum. Agronomy 2006; 28(3): 323-329. http://dx.doi.org/10.4025/actasciagron.v28i3.940.

Stieven AC, Oliveira DA, Santos JO, Wruck FJ, Campos DTA. Impacts of integrated crop-livestock-forest on microbiological indicators of soil. Agrária 2014; 9(1): 53-58. http://dx.doi.org/10.5039/agraria.v9i1a3525.

Trasar-Cepeda C, Leirós MC, Gil-Sotres F. Hydrolytic enzyme activities in agricultural and forest soils. Some implications for their use as indicators of soil quality. Soil Biology & Biochemistry 2008; 40(9): 2146-2155. http://dx.doi.org/10.1016/j.soilbio.2008.03.015.

Vinhal-Freitas IC, Ferreira AS, Corrêa GF, Wendling B. Land use impacto n microbial and biochemical indicators in agroecossystems of the Brasilian Cerrado. Vadose Zone Journal 2013; 12(1): 2-8. http://dx.doi.org/10.2136/vzj2012.0027.

Zago LMS, Moreira AKO, Silva-Neto CM, Nabout JC, Ferreira ME, Caramori SS. Biochemical activity in Brazilian Cerrado soils is differentially affected by perennial and annual crops. Australian Journal of Crop Science 2018; 12(2): 235-242. http://dx.doi.org/10.21475/ajcs.18.12.02.pne716.

Zago LMS, Oliveira RN, Bombonatto AKG, Moreira LMO, Melo ENP, Caramori SS. Extracellular enzymes from Cerrado soils as quality bioindicators in agricultural areas in Goiás, Brazil. Fronteiras. Journal of Social and Technological Environmental Science 2016; 5(1): 104-127.

Zago LMS, Sousa VR, Caramori SS. Biochemical indicators as parameters of changes in the fertility of Brasilian Cerrado soils. International Journal of Current Research 2017; 9(5): 50979-50985.

Zainodin HJ, Noraini A, Yap SJ. An Alternative Multicollinearity Approach in Solving Multiple Regression Problem. Trends in Applied Sciences Research 2011; 6(11): 1241-1255. http://dx.doi.org/10.3923/tasr.2011.1241.1255.
 

5d13a9c60e8825a53a5a3d53 floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections