Floresta e Ambiente
https://www.floram.org/article/doi/10.1590/2179-8087.036118
Floresta e Ambiente
Original Article Conservation of Nature

Climatic Response of Cedrela fissilis Radial Growth in the Ombrophilous Mixed Forest, Paraná, Brazil

Amanda Koche Marcon; Tomaz Longhi-Santos; Franklin Galvão; Kelly Geronazzo Martins; Paulo Cesar Botosso; Christopher Thomas Blum

Downloads: 1
Views: 1109

Abstract

ABSTRACT: We examined the climatic response of Cedrela fissilis radial growth based on precipitation, air relative humidity, temperature and monthly thermal amplitude. It was intended to assess how the secondary growth of C. fissilis is influenced by the climatic variables and which one are the best growth predictors in Ombrophilous Mixed Forest, southern Brazil. Wood cores were processed using classical dendrochronology methodology. Principal Components Analysis, Generalized Linear Models and correlation were used to explore the relationship between radial growth and climate. Our results indicated that the best radial growth predictor is the temperature: the seasonal behavior, under well-watered conditions, seems to have a dominant effect on growth responses. Changes in tree growth corresponding to an increase in temperatures suggest a sensitivity of the species to climate changes. These results are important to help understand how the global warming may influence long-lived pioneer tree growth.

Keywords

dendrochronology, climate changes, dendroecology, Araucaria forest

References

Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control 1974; 19(6): 716-723. http://dx.doi.org/10.1109/TAC.1974.1100705.

Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 2010; 259(4): 660-684. http://dx.doi.org/10.1016/j.foreco.2009.09.001.

Alvares CA, Stape JL, Sentelhas PC, Moraes G, Leonardo J, Sparovek G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 2013; 22(6): 711-728. http://dx.doi.org/10.1127/0941-2948/2013/0507.

Andreacci F, Botosso PC, Galvão F. Fenologia vegetativa e crescimento de Cedrela fissilis na Floresta Atlântica, Paraná, Brasil. Floresta e Ambiente 2017; 24(0): 1-11. http://dx.doi.org/10.1590/2179-8087.024115.

Andreacci F, Botosso PC, Galvão F. Sinais climáticos em anéis de crescimento de Cedrela fissilis em diferentes tipologias de Florestas Ombrófilas do Sul do Brasil. Floresta 2014; 44(2): 323-332. http://dx.doi.org/10.5380/rf.v44i2.27316.

Baker JCA, Santos GM, Gloor M, Brienen RJW. Does Cedrela always form annual rings? Testing ring periodicity across South America using radiocarbon dating. Trees (Berlin) 2017; 31(6): 1999-2009. http://dx.doi.org/10.1007/s00468-017-1604-9.

Begum S, Nakaba S, Yamagishi Y, Oribe Y, Funada R. Regulation of cambial activity in relation to environmental conditions: Understanding the role of temperature in wood formation of trees. Physiologia Plantarum 2013; 147(1): 46-54. http://dx.doi.org/10.1111/j.1399-3054.2012.01663.x PMid:22680337.

Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F. Impacts of climate change on the future of biodiversity. Ecology Letters 2012; 15(4): 365-377. http://dx.doi.org/10.1111/j.1461-0248.2011.01736.x PMid:22257223.

Billings WD. The environmental complex in relation to plant growth and distribution. The Quarterly Review of Biology 1952; 27(3): 251-265. http://dx.doi.org/10.1086/399022 PMid:13004274.

Borchert R. Water status and development of tropical trees during seasonal drought. Trees 1994; 8(3): 115-125. http://dx.doi.org/10.1007/BF00196635.

Borchert R, Rivera G, Hagnauer W. Modification of Vegetative Phenology in a Tropical Semi-deciduous Forest by Abnormal Drought and Rain. Biotropica 2002; 34(1): 27-39. http://dx.doi.org/10.1111/j.1744-7429.2002.tb00239.x.

Brasil. Agencia Nacional de Águas. Sistema Nacional de Informações sobre Recursos Hídricos. Portal HidroWeb. Brasília; 2017. [cited 2017 June 19]. Available from: http://www.snirh.gov.br/hidroweb

Cedro A, Bosiacka B, Myśliwy M. Dendrochronological analysis of three pine species used as pioneer species to stabilize the coastal dunes of the southern Baltic coast. Baltic Forestry 2013; 19(2): 226-235.

Chahud A, Petri S. Anfíbio e Palaeonisciformes da Porção Basal do Membro Taquaral, Formação Irati (Permiano), Estado de São Paulo, Brasil. Geologia USP. Série Científica 2010; 10(1): 29-37. http://dx.doi.org/10.5327/Z1519-874X2010000100003.

Cheesman AW, Winter K. Elevated night‐time temperatures increase growth in seedlings of two tropical pioneer tree species. The New Phytologist 2013; 197(4): 1185-1192. http://dx.doi.org/10.1111/nph.12098 PMid:23278464.

Cook ER, Holmes RL. Users manual for program ARSTAN. Tucson: The University of Arizona Press; 1986.

Corlett RT, Westcott DA. Will plant movements keep up with climate change? Trends in Ecology & Evolution 2013; 28(8): 482-488. http://dx.doi.org/10.1016/j.tree.2013.04.003 PMid:23721732.

Corlett RT. Tropical secondary forests. Progress in Physical Geography 1995; 19(2): 159-172. http://dx.doi.org/10.1177/030913339501900201.

Costa MS, Vasconcellos TJ, Barros CF, Callado CH. Does growth rhythm of a widespread species change in distinct growth sites? IAWA Journal 2013; 34(4): 498-509. http://dx.doi.org/10.1163/22941932-00000040.

Cui LG, Shan JX, Shi M, Gao JP, Lin HX. The miR156‐SPL 9‐DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. The Plant Journal 2014; 80(6): 1108-1117. http://dx.doi.org/10.1111/tpj.12712 PMid:25345491.

Cusatis AC, Trazzi PA, Dobner Júnior M, Higa AR. Dendroecologia de Cedrela fissilis na Floresta Ombrófila Mista. Pesquisa Florestal Brasileira 2013; 33(75): 287-297. http://dx.doi.org/10.4336/2013.pfb.33.75.474.

Elling W, Dittmar C, Pfaffelmoser K, Rötzer T. Dendroecological assessment of the complex causes of decline and recovery of the growth of silver fir (Abies alba Mill.) in Southern Germany. Forest Ecology and Management 2009; 257(4): 1175-1187. http://dx.doi.org/10.1016/j.foreco.2008.10.014.

Essiamah S, Eschrich W. Water uptake in deciduous trees during winter and the role of conducting tissues in spring reactivation. IAWA Journal 1986; 7(1): 31-38. http://dx.doi.org/10.1163/22941932-90000435.

Fan ZX, Bräuning A, Cao KF, Zhu SD. Growth–climate responses of high-elevation conifers in the central Hengduan Mountains, southwestern China. Forest Ecology and Management 2009; 258(3): 306-313. http://dx.doi.org/10.1016/j.foreco.2009.04.017.

Flores TB. Meliaceae in Flora do Brasil 2020 em construção [online]. Rio de Janeiro: Jardim Botânico do Rio de Janeiro; 2018. [cited 2018 out. 01]. Available from: <http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB9990>

Folguera G, Bastías DA, Bozinovic F. Impact of experimental thermal amplitude on ectotherm performance: Adaptation to climate change variability? Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 2009; 154(3): 389-393. http://dx.doi.org/10.1016/j.cbpa.2009.07.008 PMid:19622394.

Frank HT, Gomes MEB, Formoso MLL. Review of the areal extent and the volume of the Serra Geral Formation, Paraná Basin, South America. Pesquisas em Geociências 2009; 36(1): 49-57. http://dx.doi.org/10.22456/1807-9806.17874.

Fritts HC. Tree Rings and Climate. San Diego: Academic Press; 1976.

Gebrekirstos A, Brauning A, Sass-Klassen U, Mbow C. Opportunities and applications of dendrochronology in Africa. Current Opinion in Environmental Sustainability 2014; 6: 48-53. http://dx.doi.org/10.1016/j.cosust.2013.10.011.

Gholami V, Chau KW, Fadaee F, Torkaman J, Ghaffari A. Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers. Journal of Hydrology (Amsterdam) 2015; 529(3): 1060-1069. http://dx.doi.org/10.1016/j.jhydrol.2015.09.028.

Goodwin LD, Leech NL. Understanding correlation: Factors that affect the size of r. Journal of Experiential Education 2006; 74(3): 249-266. http://dx.doi.org/10.3200/JEXE.74.3.249-266.

Gris D, Temponi LG, Marcon TR. Native species indicated for degraded area recovery in Western Paraná, Brazil. Revista Árvore 2012; 36(1): 113-125. http://dx.doi.org/10.1590/S0100-67622012000100013.

Holmes R. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 1983; 43: 69-78.

Intergovernmental Panel on Climate Change – IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC; 2014. 151 p.

Jaramillo C, Cárdenas A. Global warming and neotropical rainforests: A historical perspective. Annual Review of Earth and Planetary Sciences 2013; 41(1): 741-766. http://dx.doi.org/10.1146/annurev-earth-042711-105403.

Jeong SJ, Ho CH, Gim HJ, Brown ME. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008. Global Change Biology 2011; 17(7): 2385-2399. http://dx.doi.org/10.1111/j.1365-2486.2011.02397.x.

Jombart T, Pontier D, Dufour AB. Genetic markers in the playground of multivariate analysis. Heredity 2009; 102(4): 330-341. http://dx.doi.org/10.1038/hdy.2008.130 PMid:19156164.

Kaiser HF. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958; 23(3): 187-200. http://dx.doi.org/10.1007/BF02289233.

Kalnay EC, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L et al. The NCEP/NCAR Reanalysis 40-year Project. Bulletin of the American Meteorological Society 1996; 77(3): 437-471. http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

Kanieski MR, Longhi-Santos T, Milani JEF, Miranda BP, Galvão F, Botosso PC et al. Crescimento diamétrico de Blepharocalyx salicifolius em Remanescente de Floresta Ombrófila Mista Aluvial, Paraná. Floresta e Ambiente 2013; 20(2): 197-206. http://dx.doi.org/10.4322/floram.2013.007.

Kanieski MR, Santos TL, Neto JG, Souza T, Galvão F, Roderjan CV. Influência da precipitação e da temperatura no incremento diamétrico de espécies florestais aluviais em Araucária-PR. Floresta e Ambiente 2012; 19(1): 17-25. http://dx.doi.org/10.4322/floram.2012.003.

KNMI. KNMI Climate Explorer [online]. De Bilt: KNMI; 2017 [cited 2017 Sep 3]. Available from: https://climexp.knmi.nl/

Koecke AV, Muellner‐Riehl AN, Pennington TD, Schorr G, Schnitzler J. Niche evolution through time and across continents: The story of Neotropical Cedrela (Meliaceae). American Journal of Botany 2013; 100(9): 1800-1810. http://dx.doi.org/10.3732/ajb.1300059 PMid:24018859.

Konig Brun FG, Brun EJ, Longhi SJ, Gorenstein MR, Maria TRBC, Rêgo GMS et al. Vegetação arbórea em remanescentes florestais urbanos: Bosque do Lago da Paz, Dois Vizinhos, PR. Pesquisa Florestal Brasileira 2017; 37(92): 503-512. http://dx.doi.org/10.4336/2017.pfb.37.92.1405.

Körner C, Basler D. Phenology under global warming. Science 2010; 327(5972): 1461-1462. http://dx.doi.org/10.1126/science.1186473 PMid:20299580.

Li ZS, Zhang QB, Ma K. Tree-ring reconstruction of summer temperature for AD 1475–2003 in the central Hengduan Mountains, Northwestern Yunnan, China. Climatic Change 2012; 110(1-2): 455-467. http://dx.doi.org/10.1007/s10584-011-0111-z.

Liang EY, Shao XM, Xu Y. Tree-ring evidence of recent abnormal warming on the southeast Tibetan Plateau. Theoretical and Applied Climatology 2009; 98(1-2): 9-18. http://dx.doi.org/10.1007/s00704-008-0085-6.

Lima AG. Erosão fluvial sobre rochas vulcânicas: algumas inferências a partir de segmentos côncavos de perfis longitudinais. Revista Brasileira de Geociencias 2012; 42(1): 34-41. http://dx.doi.org/10.5327/Z0375-75362012000500004.

Lima JAD, Santana DGD, Nappo ME. Comportamento inicial de espécies na revegetação da mata de galeria na Fazenda Mandaguari, em Indianópolis, MG. Revista Árvore 2009; 33(4): 685-694. http://dx.doi.org/10.1590/S0100-67622009000400011.

Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management 2010; 259(4): 698-709. http://dx.doi.org/10.1016/j.foreco.2009.09.023.

López L, Villalba R. Reliable estimates of radial growth for eight tropical species based on wood anatomical patterns. Journal of Tropical Forest Science 2016; 28(2): 139-152.

Machado SA, Figura MA, Silva LCR, Nascimento RGM, Quirino SMS, Téo SJ. Dinâmica de crescimento de plantios jovens de Araucaria angustifolia e Pinus taeda. Pesquisa Florestal Brasileira 2010; 30(62): 165-170. http://dx.doi.org/10.4336/2010.pfb.30.62.165.

Mendivelso HA, Camarero JJ, Gutiérrez E, Castaño-Naranjo A. Climatic influences on leaf phenology, xylogenesis and radial stem changes at hourly to monthly scales in two tropical dry forests. Agricultural and Forest Meteorology 2016; 216: 20-36. http://dx.doi.org/10.1016/j.agrformet.2015.09.014.

Miranda TLG. Plano ambiental de conservação e uso do entorno de reservatório artificial UHE Governador Bento Munhoz da Rocha Neto. Curitiba: LACTEC; 2009.

Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP et al. The next generation of scenarios for climate change research and assessment. Nature 2010; 463(7282): 747-756. http://dx.doi.org/10.1038/nature08823 PMid:20148028.

Muellner AN, Pennington TD, Koecke AV, Renner SS. Biogeography of Cedrela (Meliaceae, Sapindales) in Central and South America. American Journal of Botany 2010; 97(3): 511-518. http://dx.doi.org/10.3732/ajb.0900229 PMid:21622412.

Paredes-Villanueva K, López L, Navarro Cerrillo RM. Regional chronologies of Cedrela fissilis and Cedrela angustifolia in three forest types and their relation to climate. Trees (Berlin) 2016; 30(5): 1581-1593. http://dx.doi.org/10.1007/s00468-016-1391-8.

Pausas JG, Austin MP. Patterns of plant species richness in relation to different environments: An appraisal. Journal of Vegetation Science 2001; 12(2): 153-166. http://dx.doi.org/10.2307/3236601.

Pereira GDA, Barbosa ACMC, Torbenson MCA, Stahle DW, Granato-Souza D, Santos RMD et al. The climate response of Cedrela fissilis annual ring width in the Rio São Francisco basin, Brazil. Tree-Ring Research 2018; 74(2): 162-171. http://dx.doi.org/10.3959/1536-1098-74.2.162.

Piraino S, Abraham EM, Diblasi A, Roig Juñent FA. Geomorphological-related heterogeneity as reflected in tree growth and its relationships with climate of Monte Desert Prosopis flexuosa DC woodlands. Trees 2015; 29(3): 903-916. http://dx.doi.org/10.1007/s00468-015-1173-8.

Quadro MFL, Dias MAFS, Herdies DL, Gonçalves LGG. Análise climatológica da precipitação e do transporte de umidade na região da ZCAS através da nova geração de reanálises. Revista Brasileira de Meteorologia 2012; 27(2): 152-162. http://dx.doi.org/10.1590/S0102-77862012000200004.

R Development Core Team. R: A languageand environment for statistical computing. Vienna: R Core Team; 2017.

Reyer CPO, Leuzinger S, Rammig A, Wolf A, Bartholomeus RP, Bonfante A et al. A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability. Global Change Biology 2012; 19(1): 75-89. http://dx.doi.org/10.1111/gcb.12023 PMid:23504722.

Ribeiro CAD, Pezzopane JRM, Pezzopane JEM, Loos RA, Xavier AC, Cecílio RA et al. Delimitação de microrregiões agroclimáticas e suas relações com o potencial produtivo da cultura do eucalipto. Floresta 2011; 41(4): 779-786. http://dx.doi.org/10.5380/rf.v41i4.25342.

Rosemback R, Ferreira NJ, Shimabukuro YE, Conforte JC. Análise da dinâmica da cobertura vegetal na região Sul do Brasil a partir de dados MODIS/Terra. Revista Brasileira de Cartografia 2010; 62(2): 401-416.

Santarosa E, Oliveira JM, Roig FA, Pillar VD. Crescimento Sazonal em Araucaria angustifolia: Evidências Anatômicas. Revista Brasileira de Biociências 2007; 5(1): 618-620.

Shimamoto CY, Botosso PC, Amano E, Marques MCM. Stem growth rhythms in trees of a tropical rainforest in Southern Brazil. Trees (Berlin) 2016; 30(1): 99-111. http://dx.doi.org/10.1007/s00468-015-1279-z.

Tilman D. The Resource-Ratio hypothesis of plant succession. American Naturalist 1985; 125(6): 827-852. http://dx.doi.org/10.1086/284382.

Venegas-González A, Chagas MP, Anholetto CR Jr, Alvares CA, Roig FA, Tomazello M Fo. Sensitivity of tree ring growth to local and large-scale climate variability in a region of Southeastern Brazil. Theoretical and Applied Climatology 2016; 123(1-2): 233-245. http://dx.doi.org/10.1007/s00704-014-1351-4.

Venegas-González A, Roig FA, Lisi CS, Albiero-Junior A, Alvares CA et al. Drought and climate change incidence on hotspot Cedrela forests from the Mata Atlântica biome in southeastern Brazil. Global Ecology and Conservation 2018; 15(e00408): e00408. http://dx.doi.org/10.1016/j.gecco.2018.e00408.

Wahidin S, Idris A, Shaleh SRM. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresource Technology 2013; 129: 7-11. http://dx.doi.org/10.1016/j.biortech.2012.11.032 PMid:23232218.

Walter A, Silk WK, Schurr U. Environmental effects on spatial and temporal patterns of leaf and root growth. Annual Review of Plant Biology 2009; 60(1): 279-304. http://dx.doi.org/10.1146/annurev.arplant.59.032607.092819 PMid:19575584.

Way DA, Oren R. Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiology 2010; 30(6): 669-688. http://dx.doi.org/10.1093/treephys/tpq015 PMid:20368338.

Wigley TML, Briffa KR, Jones PD. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 1984; 23(2): 201-213. http://dx.doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2.

Williams AP, Allen CD, Macalady AK, Griffin D, Woodhouse CA et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change 2013; 3(3): 292-297. http://dx.doi.org/10.1038/nclimate1693.

Wold S, Esbensen K, Geladi P. Principal component analysis. Chemometrics and Intelligent Laboratory Systems 1987; 2(1): 37-52. http://dx.doi.org/10.1016/0169-7439(87)80084-9.

Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE et al. Warming experiments underpredict plant phenological responses to climate change. Nature 2012; 485(7399): 494-497. http://dx.doi.org/10.1038/nature11014 PMid:22622576.

Zanon MLB, Finger CAG. Relação de variáveis meteorológicas com o crescimento das árvores de Araucaria angustifolia (Bertol.) Kuntze em povoamentos implantados. Ciência Florestal 2010; 20(3): 467-476. http://dx.doi.org/10.5902/198050982061.

Zweifel R, Zimmermann L, Zeugin F, Newbery DM. Intra-annual radial growth and water relations of trees: implication towards a growth mechanism. Journal of Experimental Botany 2006; 57(6): 1445-1459. http://dx.doi.org/10.1093/jxb/erj125 PMid:16556628.
 

5d261ea10e8825061798e322 floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections