Floresta e Ambiente
https://www.floram.org/article/doi/10.1590/2179-8087.043518
Floresta e Ambiente
Original Article Wood Science and Technology

Quality of Wood and Charcoal from Eucalyptus Clones for Metallurgical Use

Diego Correa Ramos; Angélica de Cássia Oliveira Carneiro; Merete Tangstad; Raghed Saadieh; Bárbara Luísa Corradi Pereira

Downloads: 1
Views: 960

Abstract

ABSTRACT: The objectives of the present work were to determine the properties of wood and charcoal from Eucalyptus clones and assess impacts of charcoal features on the CO2 gasification reactivity and to compare with coke reactivity. Gasification reactivity was performed using charcoal particles in a furnace setup at 820 °C, under CO2 atmosphere. The results show that there is wood variability among evaluated clones and strong correlations between wood and charcoal properties. All charcoals had higher reactivity in comparison to coke. The decrease in porosity and increase in apparent density in Eucalyptus wood led to a slight decrease of CO2 gasification reactivity. In addition, strong positive correlation between charcoal reactivity and potassium concentration (K) was found.

Keywords

CO2 gasification, reductant materials, biocarbon

References

American Society for Testing and Materials – ASTM. Standard test method for chemical analysis of wood charcoal-D1762-84. Philladelphia: ASTM; 2013.

Assis MR, Brancheriau L, Napoli A, Trugilho PF. Factors affecting the mechanics of carbonized wood: literature review. Wood Science and Technology 2016; 50(3): 519-536. http://dx.doi.org/10.1007/s00226-016-0812-6.

Associação Brasileira de Normas Técnicas – ABNT. NBR 11941: Wood: Determination of the basic density. Rio de Janeiro: ABNT; 2003.

Babich A, Senk D, Fernandez M. Charcoal behavior by its injection into the modern blast furnace. ISIJ International 2010; 50(1): 81-88. http://dx.doi.org/10.2355/isijinternational.50.81.

Costa ACS, Leal CS, Santos LC, Carvalho AMMC, Oliveira AC, Pereira BLC. Properties of heartwood and sapwood of Eucalyptus camaldulensis. Brazilian Journal of Wood Science 2017; 8(1): 10-20.

Couto AM, Trugilho PF, Napoli A, Lima JT, Silva JRM, Protásio TP. Quality of charcoal from Corymbia and Eucalyptus produced at different final carbonization temperatures. Scientia Forestalis 2015; 43(108): 817-831. http://dx.doi.org/10.18671/scifor.v43n108.7.

Gładysz J, Karbowniczek M. Carbon reducers for the processes of ferroalloy production in the electric furnace. Archives of Metallurgy and Materials 2008; 53(2): 643-648.

Gomide JL, Demuner BJ. Determination of lignin in woody material: modified Klason method. O Papel 1986; 47(8): 36-38.

Kaczorowski J, Lindstad T, Syvertsen M. The influence of potassium on the boudouard reaction in manganese production. ISIJ International 2007; 47(11): 1599-1604. http://dx.doi.org/10.2355/isijinternational.47.1599.

Kan T, Strezov V, Evans TJ. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable & Sustainable Energy Reviews 2016; 57(1): 1126-1140. http://dx.doi.org/10.1016/j.rser.2015.12.185.

Mitsuoka K, Hayashi S, Amano H, Kayahara K, Sasaoaka E, Uddin A. Gasification of woody biomass char with CO2: The catalytic effects of K and Ca species on char gasification reactivity. Fuel Processing Technology 2011; 92(1): 26-31. http://dx.doi.org/10.1016/j.fuproc.2010.08.015.

Neves TA, Protásio TP, Couto AM, Trugilho PF, Silva VO, Vieira CMM. Evaluation of Eucalyptus clones in different places seeking to the production of vegetal charcoal. Pesquisa Florestal Brasileira 2011; 31(68): 319-330. http://dx.doi.org/10.4336/2011.pfb.31.68.319.

Noumia ES, Rousset P, Carneiro ACOC, Blin J. Upgrading of carbon-based reductants from biomass pyrolysis under pressure. Journal of Analytical and Applied Pyrolysis 2016; 118(1): 278-285. http://dx.doi.org/10.1016/j.jaap.2016.02.011.

Oliveira AC, Carneiro ACO, Vital BR, Almeida W, Pereira BLC, Cardoso MT. Quality parameters of Eucalyptus pellita F. Muell. wood and charcoal. Scientia Forestalis 2010; 38(87): 431-439.

Pereira BLC, Oliveira ACO, Carvalho AMML, Carneiro ACOC, Vital BR, Santos LC. Quality of wood and charcoal from eucalyptus clones for iron master. International Journal of Forestry Research 2012; 2012(1): 1-8. http://dx.doi.org/10.1155/2012/523025.

Pereira BLC, Carneiro ACO, Carvalho AMML, Colodette JL, Oliveira AC, Fontes MPF. Influence of chemical composition of Eucalyptus wood on gravimetric yield and charcoal properties. BioResources 2013a; 8(3): 4574-4592. http://dx.doi.org/10.15376/biores.8.3.4574-4592.

Pereira BLC, Carneiro ACOC, Carvalho AMML, Trugilho PF, Alves ICN, Oliveira ACO. Study of thermal degradation of eucalyptus wood by thermogravimetry and calorimetry. Revista Árvore 2013b; 37(3): 567-576. http://dx.doi.org/10.1590/S0100-67622013000300020.

Pereira BLC, Oliveira AC, Carvalho AMML, Carneiro ACO, Vital BR, Santos LC. Correlations among the heart/sapwood ratio of eucalyptus wood, yield and charcoal properties. Scientia Forestalis 2013c; 41(98): 217-225.

Pereira BLC, Carvalho AMML, Oliveira AC, Santos LC, Carneiro ACO, Magalhães MA. Effect of wood carbonization in the anatomical structure and density of charcoal from Eucalyptus. Ciência Florestal 2016; 26(2): 545-557. http://dx.doi.org/10.5902/1980509822755.

Raad TJ, Pinheiro PCC, Yoshida MI. General equation of kinetic mechanism of carbonization of Eucalyptus sp. Cerne 2006; 12(2): 93-106.

Radovic LR, Walker PL Jr, Jenkins RG. Importance of carbon active sites in the gasification of coal chars. Fuel 1983; 62(7): 849-856. http://dx.doi.org/10.1016/0016-2361(83)90041-8.

Sakurovs R, Burke L. Influence of gas composition on the reactivity of cokes. Fuel Processing Technology 2011; 92(1): 1220-1224. http://dx.doi.org/10.1016/j.fuproc.2011.01.019.

Santos RC, Carneiro ACO, Vital BR, Castro RVO, Vidaurre GB, Trugilho PF et al. Effect of properties chemical and siringil/guaiacil relation wood clones of eucalyptus in the production of charcoal. Ciência Florestal 2016; 26(2): 657-669. http://dx.doi.org/10.5902/1980509822765.

Siebeneichler EA, Costa LM, Figueredo NA, Tronto J, Rocha PA. Influence of temperature and heating rates on mechanical resistance, density and yield of the wood charcoal of Eucalyptus cloeziana. Brazilian Journal of Wood Science 2017; 8(2): 82-94.

Silverio FO, Barbosa LCA, Maltha CRA, Fidêncio PH, Cruz MP, Veloso DP et al. Effect of storage time on the composition and contente of wood extractives in Eucalyptus cultivated in Brazil. Bioresource Technology 2008; 99(1): 4878-4886. http://dx.doi.org/10.1016/j.biortech.2007.09.066. PMid:17988861.

Soares VC, Bianchi ML, Trugilho PF, Pereira AJ, Höfler J. Correlations between the properties of eucalyptus hybrids wood and charcoal. Revista Árvore 2014; 38(3): 543-549. http://dx.doi.org/10.1590/S0100-67622014000300017.

Technical Association of the Pulp and Paper Industry – TAPPI. TAPPI test methods T 204 om-88: Solvent extractives of wood and pulp, in TAPPI Standard Method. Atlanta: Tappi Technology Park; 2001. (CD-ROM).

Trugilho PF, Lima JT, Mori FA, Luiza LA. Evaluation of Eucalyptus clones for charcoal production. Cerne 2011; 7(2): 104-114.

Wang L, Hovdb B, Buib HH, Valderhaugc A, Buøc TV, Birkelandc RG et al. CO2 Reactivity assessment of woody biomass biocarbons for metallurgical purposes. Chemical Engineering Transactions 2016; 50(1): 55-60.

Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007; 86(12): 1781-1788. http://dx.doi.org/10.1016/j.fuel.2006.12.013.
 

5d93969e0e8825ff14dd775b floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections