Floresta e Ambiente
https://www.floram.org/article/doi/10.1590/2179-8087.043718
Floresta e Ambiente
Original Article Wood Science and Technology

Elementary, Chemical and Energy Characterization of “Dendê” (Elaeis guineensis Jacq.) Waste in the State of Pará

Jesomi Jonatan da Costa Abreu; Cleibiane da Silva Martins; Paulo Cezar Gomes Pereira; Maria Lucia Bianchi; João Rodrigo Coimbra Nobre

Downloads: 0
Views: 919

Abstract

ABSTRACT: This work aimed to chemically and energetically characterize palm waste in the municipality of Igarapé Açú-PA. The residue was crushed, sieved and acclimated up to 12% of humidity. Chemical analyses were performed in the fresh material, according to NBR standards. Part of the residue was transformed into charcoal at 450 °C, with heating rate of 1.67 °C.min-1 and residence time of 30 minutes. Elementary analysis (CHNS-O) was carried out in the fresh and carbonized material. For biomass, means of 32.67% of lignin and 2.58% of minerals were found. Means of 79.71% for volatile materials and 9.85% for fixed carbon were also found. In the elementary analysis, mean values of 53.79% for carbon and 0.7% for sulfur were found. Palm biomass residues presented high fixed carbon, structural carbon and lignin levels, thus presenting potential to be used in the direct production of energy, activated carbon and also biochar.

Keywords

biomass, fixed carbon, lignin, energy

References

Associação Brasileira de Normas Técnicas – ABNT. NBR-13999: determinação do resíduo (cinza) após a incineração a 525 °C. Rio de Janeiro; 2003.

Associação Brasileira de Normas Técnicas – ABNT. NBR-14853: determinação do material solúvel em etanol-tolueno e em diclorometano e acetona. Rio de Janeiro; 2010a.

Associação Brasileira de Normas Técnicas – ABNT. NBR-7989: polpa celulósica e madeira: determinação de lignina insolúvel em ácido. Rio de Janeiro; 2010b.

Brand MA, Giesel G. Influência da secagem da biomassa na eficiência de caldeira de cogeração energética. Energia na Agricultura 2017; 32(2): 132-140. http://dx.doi.org/10.17224/EnergAgric.2017v32n2p132-140.

Brito JO, Barrichelo LEG. Correlations between physical and chemical characteristics of wood and charcoal production: density and lignin content of eucalyptus wood. IPEF [online] 1977; 14: 9-20 [cited 2018 Nov 14]. Available from: http://www.ipef.br/publicacoes/scientia/nr14/cap01.pdf

Castro JP. Production and physical characterization of activated carbons from pre-treated piaçava fibers [tese]. Lavras: Departamento de Ciência e Tecnologia da Madeira, Universidade Federal de Lavras; 2016.

Cheng WP, Gao W, Cui X, Ma JH, Li RF. Phenol adsorption equilibrium and kinetics on zeolite X/activated carbon composite. Journal of the Taiwan Institute of Chemical Engineers 2016; 62: 192-198. http://dx.doi.org/10.1016/j.jtice.2016.02.004.

Demiral H, Demiral İ, Karabacakoğlu B, Tümsek F. Production of activated carbon from olive bagasse by physical activation. Chemical Engineering Research & Design 2011; 89(2): 206-213. http://dx.doi.org/10.1016/j.cherd.2010.05.005.

Ekinci K. Utilization of apple pruning residues as a source of biomass energy: a case study in Isparta province. Energy Exploration & Exploitation 2011; 29(1): 87-107. http://dx.doi.org/10.1260/0144-5987.29.1.87.

Esteves MRL, Abud AKS, Barcellos KM. Evaluation of the potential energy of green coconut shells for achievement in production of briquetes. Scientia Plena [online] 2015; 11(3): 1-8 [cited 2018 Nov 14]. Available from: https://www.scientiaplena.org.br/sp/article/view/2230/1151

Hameed Khan H, Krishnakumar V. Soil productivity and nutrition. In: Nampoothiri KUK, Krishnakumar V, Thampan PK, Achuthan Nair M, editors. The coconut palm (Cocos nucifera L.): research and development perspectives. Singapore: Springer; 2018. p. 323-442. http://dx.doi.org/10.1007/978-981-13-2754-4_8.

Hamza UD, Nasri NS, Amin NAS, Mohammed J, Zain HM. Characteristics of oil palm shell biochar and activated carbon prepared at different carbonization times. Desalination and Water Treatment 2016; 57(17): 7999-8006. http://dx.doi.org/10.1080/19443994.2015.1042068.

Huang C, Han L, Yang Z, Liu X. Ultimate analysis and heating value prediction of straw by near infrared spectroscopy. Waste Management 2009; 29(6): 1793-1797. http://dx.doi.org/10.1016/j.wasman.2008.11.027. PMid:19138837.

Linhares FA, Marcílio NR, Melo PJ. Study of activated carbon production from the black wattle shell waste with and without chemical activation. Scientia Cum Industria 2016; 4(2): 74-79.

Luk HT, Lam TYG, Oyedun AO, Gebreegziabher T, Hui CW. Drying of biomass for power generation: a case study on power generation from empty fruit bunch. Energy 2013; 63: 205-215. http://dx.doi.org/10.1016/j.energy.2013.10.056.

Machado FS, Andrade AZ. Thermo-chemical properties of charcoal fines and mineral coal for the injection into the blast furnaces of steel blast furnaces. Biomass & Energy 2004; 1(4): 353-363.

Moulin JC, Nobre JRC, Castro JP, Trugilho PF, Arantes MDC. Effect of extractives and carbonization temperature on energy characteristics of wood waste in Amazon rainforest. Cerne 2017; 23(2): 209-218. http://dx.doi.org/10.1590/01047760201723022216.

Oasmaa A, Solantausta Y, Arpiainen V, Kuoppala E, Sipila K. Fast pyrolysis bio-oils from wood and agricultural residues. Energy & Fuels 2010; 24(2): 1380-1388. http://dx.doi.org/10.1021/ef901107f.

Protásio TP, Santana JDP, Guimarães RM No, Guimarães JB Jr, Trugilho PF, Ribeiro IB. Evaluation of charcoal quality of Qualea parviflora. Brazilian Journal of Forestry Research [online] 2011; 31(68): 295-307 [cited 2018 Nov 14]. Available from: https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/276/229

Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S. A review on biomass as a fuel for boilers. Renewable & Sustainable Energy Reviews 2011; 15(5): 2262-2289. http://dx.doi.org/10.1016/j.rser.2011.02.015.

Sekirifa ML, Hadj-Mahammed M, Pallier S, Baameur L, Richard D, Al-Dujaili AH. Preparation and characterization of an activated carbon from a date stones variety by physical activation with carbon dioxide. Journal of Analytical and Applied Pyrolysis 2013; 99: 155-160. http://dx.doi.org/10.1016/j.jaap.2012.10.007.

Soares VC, Bianchi ML, Trugilho PF, Pereira AJP, Hofler J. Correlações entre as propriedades da madeira e do carvão vegetal de híbridos de eucalipto. Revista Árvore 2014; 38(3): 543-549. http://dx.doi.org/10.1590/S0100-67622014000300017.

Souza JEA, Paes FA Fo, Silva BPC, Tenório NVN, Sousa FJ, Almeida RM et al. Biomass residues as fuel for the ceramic industry in the state of Alagoas: brazil. Waste Biomass Value 2011; 3(2): 191-196. http://dx.doi.org/10.1007/s12649-011-9100-8.

Tay T, Ucar S, Karagöz S. Preparation and characterization of activated carbon from waste biomass. Journal of Hazardous Materials 2009; 165(1-3): 481-485. http://dx.doi.org/10.1016/j.jhazmat.2008.10.011. PMid:19022575.

Teixeira AM. Babassu: a new approach for an ancient Brazilian biomass. Biomass and Bioenergy 2008; 32(9): 857-864. http://dx.doi.org/10.1016/j.biombioe.2007.12.016.

Trugilho PF, Silva DA. Influence of the final carbonization temperature on the physical and chemical charcoal of jatobá (Himenea courbaril L.). Scientia Agraria 2001; 2(1-2): 45-53. http://dx.doi.org/10.5380/rsa.v2i1.976.

Vale AT, Gentil LV, Gonçalez JC, Costa AF. Caracterização energética e rendimento da carbonização de resíduos de grãos de café (Coffea arabica, L) e de madeira (Cedrelinga catenaeformis). Duke. Cerne 2007; 13(4): 416-420.

Vale AT, Santos ID, Santana MAE. Relationships among chemical properties, physical and energy wood properties of five Cerrado species. Ciência Rural [online] 2010; 20(1): 137-145 [cited 2018 Nov 14]. Available from: https://periodicos.ufsm.br/cienciaflorestal/article/view/1767/0

Yang H, Yan R, Chen H, Zheng C, Lee DH, Liang DT. Influence of mineral matter on pyrolysis of palm oil wastes. Combustion and Flame 2006; 146(4): 605-611. http://dx.doi.org/10.1016/j.combustflame.2006.07.006.
 

5d7fce9b0e8825276bbbebff floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections