Floresta e Ambiente
https://www.floram.org/article/doi/10.1590/2179-8087.044018
Floresta e Ambiente
Original Article Wood Science and Technology

Different Types of Lignocellulosic Materials for Energy Generation in the Ceramic Industry

Luis Ricardo Oliveira Santos; Luciano Donizetti Varanda; Ana Larissa Santiago Hansted; Alessandra Da Róz; Hiroyuki Yamamoto; Fabio Minoru Yamaji

Downloads: 0
Views: 809

Abstract

ABSTRACT: This work aims at the physicochemical characterization of four species: Eucalyptus sp, Pinus sp, Citrus sinensis and Hevea brasiliensis for use in ceramic furnace. Immediate analysis, chemical analyses were carried out (total extractives, Klason lignin, holocellulose and alpha-cellulose content). Results were applied to ANOVA and Tukey for statistics. The ash content of Pinus sp was 1.60%, for volatile material content Eucalyptus sp presented 83.61%, for fixed carbon values, Citrus sinensis presented 20.03%. Chemical analyses in the total extractive content, Citrus sinensis presented 21.76%, Klason lignin content, Pinus sp had 39.24%, Eucalyptus sp 60.29% had the highest holocellulose and alpha-cellulose, which was 42.72%. Pinus sp sample was the one with the highest heating value of 20.090 J/g. According to results obtained in the analyses, it is possible to conclude that all species have potential for applications in ceramic furnace.

Keywords

ceramic furnace, characterization, biomass, bioenergy

References

Al-Hamamre Z, Saidan M, Hararah M, Rawajfeh K, Alkhasawneh HE, Al-Shannag M. Wastes and biomass materials as sustainable-renewable energy resources for Jordan. Renewable & Sustainable Energy Reviews 2017; 67: 295-314. http://dx.doi.org/10.1016/j.rser.2016.09.035.

Aló LL, Konishi PA, Belini GB, Silva JP, Martins MP, Nakashima GT et al. Briquetes de bagaço de cana-de-açúcar e pó de lixa de Eucalyptus spp: caracterização e equilíbrio higroscópico. Revista Virtual de Química 2017; 9(2): 774-785. http://dx.doi.org/10.21577/1984-6835.20170048.

Brito JO, Barrichello LEG. Aspectos técnicos da utilização da madeira e carvão vegetal como combustíveis. In: Anais do Seminário de Abastecimento Energético Industrial com Recursos Florestais; 1982; São Paulo. São Paulo; 1982. p. 101-137.

Ciacco EFS, Rocha JR, Coutinho AR. The energy consuption in the ceramic tile industry in Brazil. Applied Thermal Engineering 2017; 113: 1283-1289. http://dx.doi.org/10.1016/j.applthermaleng.2016.11.068.

Coldebella R, Giesbrecht BM, Saccol AFO, Gentil M, Pedrazzi C. Propriedades físicas e químicas da madeira de Maclura tinctoria (L.) D. Don ex Steud. Ciência da Madeira 2018; 9(1): 54-61. http://dx.doi.org/10.12953/2177-6830/rcm.v9n1p54-61.

Demirbaş A. Relationships between lignin contents and heating values of biomass. Energy Conversion and Management 2001; 42(2): 183-188. http://dx.doi.org/10.1016/S0196-8904(00)00050-9.

Empresa de Pesquisa Energética – EPE. Balanço Energético Nacional 2017. Rio de Janeiro: EPE; 2017.

Fahmia R, Bridgwatera AV, Donnisonb I, Yatesc N, Jonesd JM. The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel 2008; 87(7): 1230-1240. http://dx.doi.org/10.1016/j.fuel.2007.07.026.

Garcia R, Pizarro C, Lavín AG, Bueno JL. Spanish biofuels heating value estimation. Part II: proximate analysis data. Fuel 2014; 117: 1139-1147. http://dx.doi.org/10.1016/j.fuel.2013.08.049.

Gominho J, Lourenço A, Miranda I, Pereira H. Chemical and fuel properties of stumps biomass from Eucalyptus globulus plantations. Industrial Crops and Products 2012; 39: 12-16. http://dx.doi.org/10.1016/j.indcrop.2012.01.026.

Hansted ALS, Nakashima GT, Martins MP, Yamamoto H, Yamaji FM. Comparative analyses of fast growing species in different moisture content for high quality solid fuel production. Fuel 2016; 184: 180-184. http://dx.doi.org/10.1016/j.fuel.2016.06.071.

Herbert JGM, Krishnan AU. Quantifying environmental performance of biomass energy. Renewable & Sustainable Energy Reviews 2016; 59: 292-308. http://dx.doi.org/10.1016/j.rser.2015.12.254.

Nakashima GT, Adhmann ICS, Hansted ALS, Belini GB, Waldman WR, Yamaji FM. Materiais Lignocelulósicos: caracterização e produção de briquetes. Revista Virtual de Química 2017; 9(1): 150-162. http://dx.doi.org/10.21577/1984-6835.20170012.

Posom J, Shrestha A, Saechua W, Sirisomboon P. Rapid non-destructive evaluation of moisture content and higher heating value of Leucaena leucocephala pellets using near infrared spectroscopy. Energy 2016; 107: 464-472. http://dx.doi.org/10.1016/j.energy.2016.04.041.

Prado US, Bressiani JC. Panorama da Indústria Cerâmica Brasileira na última década. Cerâmica Industrial 2013; 18(1): 7-11.

Róz AL, Ricardo JFC, Nakashima GT, Santos LRO, Yamaji FM. Maximização do teor de carbono fixo em biocarvão aplicado ao sequestro de carvão. Revista Brasileira de Engenharia Agrícola e Ambiental 2015; 19(8): 810-814. http://dx.doi.org/10.1590/1807-1929/agriambi.v19n8p810-814.

Santos RC, Carneiro ACO, Castro RVO, Pimenta AS, Castro AFNM, Marinho IV et al. Potencial de briquetagem de resíduos florestais da região do Seridó, no Rio Grande do Norte. Pesquisa Florestal Brasileira 2011; 31(68): 285-294. http://dx.doi.org/10.4336/2011.pfb.31.68.285.

Singh YD, Mahanta P, Bora U. Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production. Renewable Energy 2017; 103: 490-500. http://dx.doi.org/10.1016/j.renene.2016.11.039.

Spanhol A, Nones DL, Kumabe FJB, Brand MA. Qualidade dos pellets de biomassa florestal produzidos em Santa Catarina para a geração de energia. Floresta 2015; 45(4): 833-844. http://dx.doi.org/10.5380/rf.v45i4.37950.

Technical Association of the Pulp and Paper Industry – TAPPI. T 249-85: carbohydrate composition of extractive-free wood and wood pulp by gas-liquid chromatography. Peachtree Corners: TAPPI; 1985.

Tenorio C, Moya R. Thermogravimetric characteristics, its relation with extractives and chemical properties and combustion characteristics of ten fast-growth species in Costa Rica. Thermochimica Acta 2013; 563: 12-21. http://dx.doi.org/10.1016/j.tca.2013.04.005.

Yamaji FM, Vendrasco L, Chrisostomo W, Flores WP. Análise do comportamento higroscópico de briquetes. Energia na Agricultura 2013; 28(1): 11-15. http://dx.doi.org/10.17224/EnergAgric.2013v28n1p11-15.
 

5d9396d80e8825c216dd775b floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections