25APR

FLORAM receives Impact Factor

We are pleased to announce that FLORAM has received its first impact factor rating in the 2022 Journal Citation Reports (JCR).

Now FLORAM has the highest impact factor among Brazilian Forest Sciences journals.

Floresta e Ambiente
https://www.floram.org/article/doi/10.1590/2179-8087.080517
Floresta e Ambiente
Original Article Conservation of Nature

Establishment of Leguminous Trees in the Soil of a Shooting Range

Rafael Nogueira Scoriza; Maria Elizabeth Fernandes Correia

Downloads: 0
Views: 892

Abstract

ABSTRACT: Shooting range activities risk contaminating the soil, posing potential risks to human health, the local biota, and water sources. Considering that soil organisms are the first to be affected by contamination, this study aimed to evaluate the initial growth of the leguminous tree Albizia polycephala and its association with microbes in soil taken from this area. The collected soil was placed in 60-ml tubes with legume seeds and stored in a greenhouse for 60 days. The differences in the legumes’ growth were not related to the physical and chemical properties of the soil, nor to its metal content, but rather to mycorrhizal colonization and nodulation, which were shown to be effective in creating favorable conditions. This indicates that the site under study has great natural potential for the establishment of tree species, which could be impaired if it continues to be used for shooting practice.

Keywords

soil contamination, restoration, protected area, Albizia polycephala

References

Ahmad M, Lee SS, Moon DH, Yang JH, Ok YS. A review of environmental contamination and remediation strategies for heavy metals at shooting range soils. In: Malik A, Grohmann E, editor. Environmental protection strategies for sustainable development. New York: Springer; 2012. p. 437-451.

Ban Y, Xu Z, Zhang H, Chen H, Tang M. Soil chemistry properties, translocation of heavy metals, and mycorrhizal fungi associated with six plant species growing on lead-zinc mine tailings. Annals of Microbiology 2015; 65(1): 503-515. 10.1007/s13213-014-0886-z

Carvalho PER. Espécies arbóreas brasileiras. Colombo: Embrapa Florestas; 2006.

Companhia Ambiental do Estado de São Paulo (Cetesb). Decisão de diretoria nº 045/2014/E/C/I, de 20 de fevereiro de 2014. Diário Oficial do Estado de São Paulo, São Paulo, Caderno Executivo, Seção 1, p. 53.

Chaer GM, Resende AS, Campello EFC, Faria SM, Boddey RM. Nitrogen-fixing legume tree species for the reclamation of severely degraded lands in Brazil. Tree Physiology 2011; 31(2): 139-149. 10.1093/treephys/tpq116

Conselho Nacional de Meio Ambiente (Conama). Resolução no 420, de 28 de dezembro de 2009. Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas. Diário Oficial da República Federativa do Brasil, Brasília, DF [cited 2019 July 3]. Available from: Available from: https://bit.ly/2Jl71Ip .

Empresa Brasileira de Pesquisa Agropecuária (Embrapa). Manual de métodos de análise de solos. Rio de Janeiro: Embrapa Solos; 2011.

Gattai GS, Pereira SV, Costa CMC, Lima CEP, Maia LC. Microbial activity, arbuscular mycorrhizal fungi and inoculation of woody plants in lead contaminated soil. Brazilian Journal of Microbiology 2011; 42(3): 859-867. 10.1590/S1517-83822011000300004

Giovannetti M, Mosse B. An evaluation of techniques to measure vesicular-arbuscular mycorrhizal infection in roots. The New Phytologist 1980; 84(3): 484-500. 10.1111/j.1469-8137.1980.tb04556.x

Gohre V, Paszkowski U. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 2006; 223(6): 1115-1122. 10.1007/s00425-006-0225-0

Grace C, Stribley DP. A safer procedure for routine staining of vesicular-arbuscular mycorrhizal fungi. Mycological Research 1991; 95(10): 1160-1162. 10.1016/S0953-7562(09)80005-1

Koske RE, Gemma JN. A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research 1989; 92(4): 486-488. 10.1016/S0953-7562(89)80195-9

Lamb DT, Matanitobua VP, Palanisami T, Megharaj M, Naidu R. Bioavailability of barium to plants and invertebrates in soils contaminated by barite. Environmental Science and Technology 2013; 47(9): 4670-4676. 10.1021/es302053d

Le Bourlegat JMG, Rossi SC, Chino CE, Schiavinato MA, Lagôa AMMA. Tolerância de Leucaena leucocephala (Lam.) de Wit. ao metal pesado chumbo. Revista Brasileira de Biociências 2007; 5(s2): 1017-1019.

Leps J, Smilauer P. Multivariate analysis of ecological data using Canoco. Cambridge: Cambridge University Press; 2003.

Lin A, Zhang X, Wong M, Ye Z, Lou L, Wang Y et al. Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization. Environmental Geochemistry and Health 2007; 29(6): 473-481. 10.1007/s10653-007-9116-y

Llugany M, Poschenrieder C, Barceló J. Assessment of barium toxicity in bush beans. Archives of Environmental Contamination Toxicology 2000; 39(4): 440-444. 10.1007/s002440010125

Ma Y, Dickinson NM, Wong MH. Beneficial effects of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous trees on Pb/Zn mine tailings. Soil Biology & Biochemistry 2006; 38(6): 1403-1412. 10.1016/j.soilbio.2005.10.016

Melo LCA, Alleoni LRF, Carvalho G, Azevedo RA. Cadmium-and barium-toxicity effects on growth and antioxidant capacity of soybean (Glycine max L.) plants, grown in two soil types with different physicochemical properties. Journal of Plant Nutrition and Soil Science 2011; 174(5): 847-859. 10.1002/jpln.201000250

Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (Ibama). Plano de manejo da Floresta Nacional de Ipanema. Brasília, DF: Ibama; 2003.

Muhammad S, Iqbal MZ, Mohammad A. Effect of lead and cadmium on germination and seedling growth of Leucaena leucocephala. Journal of Applied Science and Environmental Management 2008; 12(2): 61-66. 10.4314/jasem.v12i3.55497

Newman EJ. A method of estimating the total length of root sample. Journal of Applied Ecology 1996; 3(1): 139-145. 10.2307/2401670

Nogueira ARA, Souza GB. Manual de laboratórios: solo, água, nutrição, vegetação, nutrição animal e alimentos. São Carlos: Embrapa Pecuária Sudeste; 2005.

Philips JM, Hayman DS. Improved procedure for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transaction of the British Mycological Society 1970; 55(1): 158-161. 10.1016/S0007-1536(70)80110-3

Pichtel J, Kuroiwa K, Sawyerr HT. Distribution of Pb, Cd and Ba in soils and plants of two contaminated sites. Environmental Pollution 2000; 110(1): 171-178. 10.1016/S0269-7491(99)00272-9

Rantalainen M, Torkkeli M, Strommer R, Setala H. Lead contamination of an old shooting range affecting the local ecosystem - A case study with a holistic approach. Science of the Total Environment 2006; 369(1-3): 99-108. 10.1016/j.scitotenv.2006.05.005

Rao AV, Tak R. Growth of different tree species and their nutrient uptake in limestone mine spoil as influenced by arbuscular mycorrhizal (AM)-fungi in Indian arid zone. Journal of Arid Environments 2002; 51(1): 113-119. 10.1006/jare.2001.0930

Selonen S, Setala H. Soil processes and tree growth as shooting ranges in a boreal forest reflect contamination history and lead induced changes in soil food webs. Science of the Total Environment 2015; 518-519: 320-327. 10.1016/j.scitotenv.2015.03.018

Singh RP, Tripathi RD, Sinha SK, Maheshwari R, Srivastava HS. Response of higher plants to lead contaminated environment. Chemosphere 1997; 34(11): 2467-2493. 10.1016/S0045-6535(97)00087-8

Sorvari J, Antikainen R, Pyy O. Environmental contamination at Finnish shooting ranges - the scope of the problem and management options. Science of the Total Environment 2006; 366(1): 21-31. 10.1016/j.scitotenv.2005.12.019

Souza LA, Andrade SAL, Souza SCR, Schiavinato MA. Arbuscular mycorrhiza confer Pb tolerance in Calopogonium mucunoides. Acta Physiologiae Plantarum 2012a; 34(2): 523-531. 10.1007/s11738-011-0849-y

Souza SCR, Andrade SAL, Souza LA, Schiavinato MA. Lead tolerance and phytoremediation potential of Brazilian leguminous tree species at the seedling stage. Journal of Environmental Management 2012b; 110: 299-307. 10.1016/j.jenvman.2012.06.015

Standard Methods. 3120 metals by plasma emission spectroscopy. Denver: Standard Methods; 1999.

Suwa R, Jayachandran K, Nguyen NT, Boulenouar A, Fujita K, Saneoka H. Barium toxicity effects in soybean plants. Archives of Environmental Contamination Toxicology 2008; 55(3): 397-403. 10.1007/s00244-008-9132-7

United States Environmental Protection Agency (Usepa). Framework for inorganic metals risk assessment. Washington, DC: Usepa; 2004.

Xu ZY, Tang M, Chen H, Ban YH, Zhang HH. Microbial community structure in the rhizosphere of Sophora viciifolia grown at a lead and zinc mine of northwest China. Science of the Total Environment 2012; 435-436: 453-464. 10.1016/j.scitotenv.2012.07.029

Yang R, Tang J, Yang Y, Chen X. Invasive and non-invasive plants differ in response to soil heavy metal lead contamination. Botanical Studies 2007; 48: 453-458.

Yang R, Yu G, Tang J, Chen X. Effects of metal lead on growth and mycorrhizae of an invasive plant species (Solidago canadensis L.). Journal of Environmental Sciences 2008; 20(6): 739-744.

Yang Y, Han X, Liang Y, Ghosh A, Chen J, Tang M. The combined effects of arbuscular mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L. Plos One 2015; 10(12): 1-24. 10.1371/journal.pone.0145726
 


Submitted date:
07/25/2017

Accepted date:
03/12/2018

5d78f2aa0e88256f40b1fa01 floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections