Floresta e Ambiente
https://www.floram.org/journal/floram/article/doi/10.1590/2179-8087.056916
Floresta e Ambiente
Original Article Silviculture

Photosynthesis and Growth of Copaiba Seedlings Subjected to Soil Flooding

Daniela Baldez Vidal; Isis Leite Medeiros Mascarenhas Andrade; Ândrea Dalmolin; Marcelo Mielke

Downloads: 1
Views: 1126

Abstract

ABSTRACT: The present study aimed to evaluate the effects of soil flooding on photosynthesis, growth, and biomass partitioning of young plants of copaiba (Copaifera lucens Dwyer, Fabaceae ) to investigate the possibility of using this species in restoration projects of riparian forests. Based on our results, we concluded that young plants of C. lucens are able to tolerate soil flooding for a period of approximately one month, despite significant decreases in the growth rate of roots, stomatal conductance to water vapor, and the net photosynthetic rate. These results indicate the possibility of including C. lucens in restoration programs for degraded riparian forests in regions where this species naturally occurs.

Keywords

Key-words: Copaifera lucens , stomatal conductance, net photosynthetic rate, relative growth rate

References

Allen JA, Pezeshki SR, Chambers JL. Interaction of flooding and salinity stress on baldcypress (Taxodium distichum). Tree Physiology 1996; 16(1-2): 307-313. http://dx.doi.org/10.1093/treephys/16.1-2.307. PMid:14871777.

Batista CUN, Medri ME, Bianchini E, Medri C, Pimenta JA. Tolerância à inundação de Cecropia pachystachya Trec. (Cecropiaceae): aspectos ecofisiológicos e morfoanatômicos. Acta Botanica Brasílica 2008; 22(1): 91-98. http://dx.doi.org/10.1590/S0102-33062008000100012.

Bender B, Capellesso ES, Lottici ME, Sentkovski J, Mielniczki-Pereira AA, Rosa LMG, Sausen TL. Growth responses and accumulation of soluble sugars in Inga marginata Wild. (Fabaceae) subjected to flooding under contrasting light conditions. Brazilian Journal of Biology 2016; ahead of print

Dalmolin AC, Dalmagro HJ, Lobo F, Antunes MZ, Ortíz CER, Vourlitis GL. Photosynthetic light and carbon dioxide response of the invasive tree, Vochysia divergens Pohl, to experimental flooding and shading. Photosynthetica 2013; 51(3): 379-386. http://dx.doi.org/10.1007/s11099-013-0034-1.

Davanso VM, Souza LA, Medri ME, Pimenta JA, Bianchini E. Photosynthesis, growth and development of Tabebuia avellanedae Lor. Ex Griseb. (Bignoniaceae) in flooded soil. Brazilian Archives of Biology and Technology 2002; 45(3): 375-384. http://dx.doi.org/10.1590/S1516-89132002000300016.

Ferreira DAC, Dias HCT. Situação atual da Mata Ciliar do Ribeirão São Bartolomeu em Viçosa, MG. Revista Árvore 2004; 28(4): 617-623. http://dx.doi.org/10.1590/S0100-67622004000400016.

Gil PM, Gurovich L, Schaffer B, García N, Iturriaga R. Electrical signaling, stomatal conductance, ABA and Ethylene content in avocado trees in response to root hypoxia. Plant Signaling & Behavior 2009.4: 100-108.

Gonçalves JFC, Melo EGF, Silva CEM, Ferreira MJ, Justino GC. Estratégias no uso da energia luminosa por plantas jovens de Genipa spruceana Steyerm submetidas ao alagamento. Acta Botanica Brasílica 2012; 26(2): 391-398. http://dx.doi.org/10.1590/S0102-33062012000200014.

Gonçalves JFC, Melo EGF, Silva CEM, Ferreira MJ, Gomes IB. Crescimento, partição de biomassa e fotossíntese em plantas jovens de Genipa spruceana submetidas ao alagamento. Cerne 2013; 19(2): 193-200. http://dx.doi.org/10.1590/S0104-77602013000200003.

Gravatt DA, Kirby CJ. Patterns of photosynthesis and starch allocation in seedlings of four bottomland hardwood tree species subjected to flooding. Tree Physiology 1998; 18(6): 411-417. http://dx.doi.org/10.1093/treephys/18.6.411. PMid:12651366.

Herrera A. Responses to flooding of plant water relations and leaf gas exchange in tropical tolerant trees of a black-water wetland. Frontiers in Plant Science 2013; 4: 106. http://dx.doi.org/10.3389/fpls.2013.00106. PMid:23641246.

Hunt R, Causton DR, Shipley B, Askew AP. A modern tool for classical plant growth analysis. Annals of Botany 2002; 90(4): 485-488. http://dx.doi.org/10.1093/aob/mcf214. PMid:12324272.

Kozlowski TT. Physiological–ecological impacts of flooding on riparian forest ecosystems. Wetlands 2002; 22(3): 550-561. http://dx.doi.org/10.1672/0277-5212(2002)022[0550:PEIOFO]2.0.CO;2.

Kozlowski TT, Pallardy SG. Acclimation and adaptive responses of woody plants to environmental stresses. Botanical Review 2002; 68(2): 270-334. http://dx.doi.org/10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2.

Kreuzwieser J, Papadopoulou E, Rennenberg H. Interaction of flooding with carbon metabolism of forest trees. Plant Biology 2004; 6(3): 299-306. http://dx.doi.org/10.1055/s-2004-817882. PMid:15143438.

Lavinsky AO, Sant’Ana CS, Mielke MS, Almeida AAF, Gomes FP, França S et al. Effects of light availability and soil flooding on growth and photosynthetic characteristics of Genipa americana L. seedlings. New Forests 2007; 34(1): 41-50. http://dx.doi.org/10.1007/s11056-006-9036-1.

Li M, López R, Venturas M, Pita P, Gordaliza GG, Gil L et al. Greater resistance to flooding of seedlings of Ulmus laevis than Ulmus minor is related to the maintenance of a more positive carbon balance. Trees 2015; 29(3): 835-848. http://dx.doi.org/10.1007/s00468-015-1163-x.

Lira JMS, Ferreira RA, Silva CD Jr, Santos EM No, Santana WS. Análise de crescimento e trocas gasosas de plantas de Lonchocarpus sericeus (Poir.) D.C. sob alagamento para uso na recuperação de matas de ciliares. Ciência Florestal 2013; 23(4): 655-665. http://dx.doi.org/10.5902/1980509812349.

Lobo PC, Joly CA. Aspectos ecofisiologicos da vegetação de mata ciliar do Sudeste do Brasil. In: Rodrigues RR, Filho FL. (eds.) Matas ciliares conservação e recuperação. São Paulo: Edusp; 2000.

Lopez OR, Kursar TA. Flood tolerance of four tropical tree species. Tree Physiology 1999; 19(14): 925-932. http://dx.doi.org/10.1093/treephys/19.14.925. PMid:12651304.

Martins K, Santos JD, Gaiotto FA, Moreno MA, Kageyama PY. Estrutura genética populacional de Copaifera langsdorffii Desf. (Leguminosae – Caesalpinioideae) em fragmentos florestais no Pontal do Paranapanema, SP, Brasil. Revista Brasileira de Botanica. 2008; 31(1): 61-69. http://dx.doi.org/10.1590/S0100-84042008000100007.

Maxwell A, Capon SJ, James CS. Effects of flooding on seedling establishment in two Australian riparian trees with contrasting distributions: Acacia stenophylla A. Cunn ex Benth and Casuarina cunninghamiana Miq. Ecohydrology 2016; 9(6): 942-949. http://dx.doi.org/10.1002/eco.1691.

Medina CL, Sanches MC, Tucci MLS, Sousa CAF, Cuzzuol GRF, Joly CA. Erythrina speciosa (Leguminosae-Papilionoideae) under soil water saturation: morphophysiological and growth responses. Annals of Botany 2009; 104(4): 671-680. http://dx.doi.org/10.1093/aob/mcp159. PMid:19581282.

Medri ME, Ferreira AC, Kolb RM, Bianchini E, Pimenta JA, Davanso-Fabro VM et al. Alterações morfoanatômicas em plantas de Lithraea molleoides (Vell.) Engl. submetidas ao alagamento. Biological Sciences 2007; 29: 15-22.

Mielke MS, Almeida AAF, Gomes FP, Aguillar AG, Mangabeira PAO. Leaf gas exchange, chlorophyll fluorescence and growth responses of Genipa americana seedlings to soil flooding. Environmental and Experimental Botany 2003; 50(3): 221-231. http://dx.doi.org/10.1016/S0098-8472(03)00036-4.

Mielke MS, Matos EM, Couto VB, Almeida AAF, Gomes FP, Mangabeira PAO. Some photosynthetic and growth responses of Annona glabra L. seedlings to soil flooding. Acta Botanica Brasílica 2005; 19(4): 907-913. http://dx.doi.org/10.1590/S0102-33062005000400025.

Mielke MS, Schaffer B. Photosynthetic and growth responses of Eugenia uniflora L. seedlings to soil flooding and light intensity. Environmental and Experimental Botany 2010; 68(2): 113-121. http://dx.doi.org/10.1016/j.envexpbot.2009.11.007.

Moraes MEB, Gomes RL, Thévenin JMR, Silva GS, Viana WCC. Análise da paisagem da Bacia Hidrográfica do Rio Almada (Ba) com base na fragmentação da vegetação. Caminhos de Geografia 2012; 13(41): 159-169.

Motta JC Jr, Lombardi JA. Aves como agentes dispersores de copaíba (Copaifera langsdorffii, (Caesalpiniaceae) em São Carlos, Estado de São Paulo. Ararajuba 1990; 1: 105-106.

Parolin P. Diversity and adaptations to flooding in trees of Amazonian floodplains. Pesquisas. Botânica 2012; 63: 7-28.

Oliveira AS. Tolerância ao encharcamento, alterações morfológicas e anatômicas em algumas espécies lenhosas tropicais [dissertação]. Brasília: Universidade de Brasília; 2012. 52 p.

Oliveira VC, Joly CA. Flooding tolerance of Calophyllum brasiliense Camb. (Clusiaceae): morphological, physiological and growth responses. Annals of Botany 2010; 24: 185-193.

Pio Corrêa M. 1984. Dicionário de plantas úteis do Brasil e das exóticas cultivadas. Vol. 2. Rio de Janeiro: Imprensa nacional. p. 370-375.

Rigamonte-Azevedo OC, Wadt PGS, Wadt LHO. Copaíba: ecologia e produção de óleo resina. Rio Branco: Embrapa Acre, 2004.

Sambuichi RHR. Lista de árvores nativas do sul da Bahia. In: Sambuichi RHR, Mielke MS, Pereira CE, editores. Nossas árvores: conservação, uso e manejo de árvores nativas do sul da Bahia. Ilheús: Editus; 2009.

Santos TA, Mielke MS, Pereira HAS, Gomes FP, Silva DCS. Trocas gasosas foliares e crescimento de plantas jovens de Protium heptaphyllum March (Burseraceae) submetidas ao alagamento do solo em dois ambientes de luz. Scientia Forestalis 2012; 40: 47-56.

Tundisi JG, Tundisi TM. Impactos potenciais das alterações do Código Florestal nos recursos hídricos. Biota Neotropica 2010; 10(4): 67-75. http://dx.doi.org/10.1590/S1676-06032010000400010.

Vidal DB, Andrade IL, Andrade ELP, Mielke MS. Effects of submergence in water on seed germination and vigor of the Copaifera lucens (Fabaceae) seedlings. Journal of Forestry Research 2014; 25(4): 903-908. http://dx.doi.org/10.1007/s11676-014-0537-z.

Vu JCV, Yelenosky G. Photosynthetic responses of citrus trees to soil flooding. Physiologia Plantarum 2006; 81(1): 7-14. http://dx.doi.org/10.1111/j.1399-3054.1991.tb01705.x.

Xia JH, Roberts JKM. Improved cytoplasmic pH regulation, increased lactate efflux, and reduced cytoplasmic levels are biochemical traits expressed in root tips of whole maize seedlings acclimated to a low-oxygen environment. Plant Physiology 1994; 105(2): 651-657. http://dx.doi.org/10.1104/pp.105.2.651. PMid:12232232.
 

5c3627e30e8825817a27b12f floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections