Small Rural Atlantic Forest Remnants Might Store Significant Amounts of Carbon: An Example in Southeastern Brazil
Nina Caldeira; Kelly Antunes; Walef Duarte Vieira; Nathan Oliveira Barros; Fabrício Alvim Carvalho
Abstract
Keywords
References
Arroyo-Rodríguez V, Melo FPL, Martínez-Ramos M, Bongers F, Chazdon RL, Meave JA, et al. Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biological Reviews 2017; 92:326-40. https://doi.org/10.1111/brv.12231.
Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Di Fiore A, et al. Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 2004;10:545-62. https://doi.org/10.1111/j.1365-2486.2004.00751.x.
Borges ER, Dexter KG, Bueno ML, Pontara V, Carvalho FA. The evolutionary diversity of urban forests depends on their land-use history. Urban Ecosystems 2020; 23:631-43. https://doi.org/10.1007/s11252-020-00938-y.
Borges ER, Dexter KG, Pyles MV, Bueno ML, Santos RM dos, Fontes MAL, et al. The interaction of land-use history and tree species diversity in driving variation in the aboveground biomass of urban versus non-urban tropical forests. Ecological Indicators 2021; 129:107915. https://doi.org/10.1016/j.ecolind.2021.107915.
Brienen RJW, Phillips OL, Feldpausch TR, Gloor E, Baker TR, Lloyd J, et al. Long-term decline of the Amazon carbon sink. Nature 2015; 519:344-8. https://doi.org/10.1038/nature14283.
Brown S. Estimating biomass and biomass change of tropical forests: a primer. Rome: Food and Agriculture Organization of the United Nations; 1997.
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE. Towards a worldwide wood economics spectrum. Ecology Letters 2009; 12:351-66. https://doi.org/10.1111/j.1461-0248.2009.01285.x.
Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBC, et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology 2014; 20:3177-90. https://doi.org/10.1111/gcb.12629.
Coelho AJP, Villa PM, Matos FAR, Heringer G, Bueno ML, de Paula Almado R, et al. Atlantic Forest recovery after long-term eucalyptus plantations: The role of zoochoric and shade-tolerant tree species on carbon stock. Forest Ecology and Management 2022;503. https://doi.org/10.1016/j.foreco.2021.119789.
Costemalle VB, Candido HMN, Carvalho FA. An estimation of ecosystem services provided by urban and peri-urban forests: a case study in Juiz de Fora, Brazil. Cienc Rural 2023;53:e20210208. https://doi.org/10.1590/0103-8478cr20210208.
Da Rocha SJSS, Torres CMME, Jacovine LAG, Schettini BLS, Villanova PH, Rufino MPMX, et al. Efeito da borda na estrutura e estoque de carbono de uma Floresta Estacional Semidecidual. Advances in Forestry Science 2019;6. https://doi.org/10.34062/afs.v6i2.7635.
De Lima RAF, Phillips OL, Duque A, Tello JS, Davies SJ, De Oliveira AA, et al. Making forest data fair and open. Nat Ecol Evol 2022; 6:656-8. https://doi.org/10.1038/s41559-022-01738-7.
DeFries R, Achard F, Brown S, Herold M, Murdiyarso D, Schlamadinger B, et al. Earth observations for estimating greenhouse gas emissions from deforestation in developing countries. Environmental Science & Policy 2007; 10:385-94. https://doi.org/10.1016/j.envsci.2007.01.010.
Fearnside PM. Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 1997;90:59-87. https://doi.org/10.1016/S0378-1127(96)03840-6.
Ferreira IJM, Campanharo WA, Fonseca MG, Escada MIS, Nascimento MT, Villela DM, et al. Potential aboveground biomass increase in Brazilian Atlantic Forest fragments with climate change. Global Change Biology 2023:gcb.16670. https://doi.org/10.1111/gcb.16670.
Flores O, Coomes DA. Estimating the wood density of species for carbon stock assessments. Methods Ecol Evol 2011;2:214-20. https://doi.org/10.1111/j.2041-210X.2010.00068.x.
Gaspar R de O, Castro RVO, Peloso RVD, Souza FC de, Martins SV. Análise fitossociológica e do estoque de carbono no estrato arbóreo de um fragmento de Floresta Estacional Semidecidual. Ciência Florestal 2014; 24:313-24. https://doi.org/10.5902/1980509814569.
Guariguata MR, Ostertag R. Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management 2001; 148:185-206. https://doi.org/10.1016/S0378-1127(00)00535-1.
Heinrich VHA, Vancutsem C, Dalagnol R, Rosan TM, Fawcett D, Silva-Junior CHL, et al. The carbon sink of secondary and degraded humid tropical forests. Nature 2023; 615:436-42. https://doi.org/10.1038/s41586-022-05679-w.
Hubau W, Lewis SL, Phillips OL, Affum-Baffoe K, Beeckman H, Cuní-Sanchez A, et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 2020; 579:80-7. https://doi.org/10.1038/s41586-020-2035-0.
IBGE. Manual técnico da vegetação brasileira. Rio de Janeiro: IBGE; 2012.
Joly CA, Metzger JP, Tabarelli M. Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives. New Phytologist 2014; 204:459-73. https://doi.org/10.1111/nph.12989.
Kent M, Coker P. Vegetation Description and Analysis: A Practical Approach. New York: John Willey and Sons; 1992.
Lederer M. REDD+ governance. Wiley Interdisciplinary Reviews: Climate Change 2012; 3:107-13. https://doi.org/10.1002/wcc.155.
Maia VA, Santos ABM, de Aguiar-Campos N, de Souza CR, de Oliveira MCF, Coelho PA, et al. The carbon sink of tropical seasonal forests in southeastern Brazil can be under threat. Science Advances 2020;6. https://doi.org/10.1126/sciadv.abd4548.
Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011;333:988-93. https://doi.org/10.1126/science.1201609
Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, et al. New handbook for standardized measurement of plant functional traits worldwide. Australian Journal of Botany 2013; 61:167. https://doi.org/10.1071/BT12225.
Pyles MV, Magnago LFS, Borges ER, van den Berg E, Carvalho FA. Land use history drives differences in functional composition and losses in functional diversity and stability of Neotropical urban forests. Urban Forestry & Urban Greening 2020; 49:126608. https://doi.org/10.1016/j.ufug.2020.126608.
Ribeiro SC, Jacovine LAG, Soares CPB, Martins SV, Nardelli ÁMB, Souza AL de. Quantificação de biomassa e estimativa de estoque de carbono em uma capoeira da Zona da Mata Mineira. Revista Árvore 2010; 34:495-504. https://doi.org/10.1590/S0100-67622010000300013.
Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W, et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci USA 2011;108:9899-904. https://doi.org/10.1073/pnas.1019576108.
Silva HF, Ribeiro SC, Botelho SA, Liska GR, Cirillo MA. Biomass and Carbon in a Seasonal Semideciduous Forest in Minas Gerais. Floresta e Ambiente 2018;25. https://doi.org/10.1590/2179-8087.050816.
Swenson NG, Enquist BJ. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community‐wide variation across latitude
Torres CMME, Jacovine LAG, Soares CPB, Oliveira Neto SN, Santos RD, Castro Neto F. Quantificação de biomassa e estocagem de carbono em uma floresta estacional semidecidual, no Parque Tecnológico de Viçosa, MG. Revista Árvore 2013; 37:647-55. https://doi.org/10.1590/S0100-67622013000400008.
UNFCCC. Clean Development Mechanism (CDM). Https://CdmUnfcccInt/IndexHtml 2023.
Villa PM, Martins SV, Rodrigues AC, Safar NVH, Bonilla MAC, Ali A. Testing species abundance distribution models in tropical forest successions: Implications for fine-scale passive restoration. Ecological Engineering 2019; 135:28-35. https://doi.org/10.1016/J.ECOLENG.2019.05.015.
Submitted date:
07/31/2024
Accepted date:
03/05/2025