Floresta e Ambiente
https://www.floram.org/article/doi/10.1590/2179-8087.003916
Floresta e Ambiente
Original Article Silviculture

Conversion Efficiency of Photosynthetically Active Radiation Into Acacia mearnsii Biomass

Elder Eloy; Elvis Felipe Elli; Felipe Schwerz

Downloads: 0
Views: 1300

Abstract

ABSTRACT: The objective of this experiment was to determine the conversion efficiency of intercepted photosynthetically active radiation into biomass of Acacia mearnsii De Wild. seedlings. A forest species, plastic tubes (90 cm3), and 11 evaluation periods (up to 180 days after emergence) were used in this study. The leaf area index (LAI), total dry biomass (BIO), global solar radiation (GSR), cumulative intercepted photosynthetically active radiation (PARic), and conversion efficiency of radiation (εb) were determined using a pyranometer (LI200X, LICOR). The value of εb in BIO seedlings of Acacia mearnsii was 7.76 g MJ-1. LAI was directly related to the efficiency of PARic, and this influenced the development, production potential and accumulation of BIO. The value of GSR flow was 11.81 MJ m-2 day-1, while the value inside the greenhouse was 6.26 MJ m-2 day-1.

Keywords

black wattle, global solar radiation, leaf area index

References

Albaugh JM, Albaugh TJ, Heiderman RR, Leggett Z, Stape JL, King JS et al. Evaluating changes in switchgrass physiology, biomass, and light-use efficiency under artificial shade to estimate yields if intercropped with Pinus taeda L. Agroforestry Systems 2014; 88(3): 489-503. http://dx.doi.org/10.1007/s10457-014-9708-3.

Assis FN, Mendez MEG. Relação entre radiação fotossinteticamente ativa e radiação global. Pesquisa Agropecuária Brasileira 1989; 2(7): 797-800.

Beadle C, Maria O, Dung PT, Caroline M, Huong VD, Dat KT et al. Optimising silvicultural management and productivity of high-quality acacia plantations, especially for sawlogs. Canberra, Australia: Australian Centre for International Agricultural Research; 2013. p. 123.

Behling A, Sanquetta CR, Corte APD, Netto SP, Caron BO, Simon AA et al. Analysis of leaf area in black wattle throughout its plantation cycle. African Journal of Agricultural Research 2015a; 10(34): 3382-3386. http://dx.doi.org/10.5897/AJAR2015.9579.

Behling A, Sanquetta CR, Dalla Corte AP, Caron B, Simon AA, Behling M et al. Conversion efficiency of photosynthetically active radiation intercepted in biomass in stands of black wattle in Brazil. Bosque 2015b; 36(1): 61-69. http://dx.doi.org/10.4067/S0717-92002015000100007.

Benincasa MMP. Análise de crescimento de plantas (noções básicas). Jaboticabal: CAVUNESP; 2003.

Binkley D, Stape JL, Ryan MG. Thinking about efficiency of resource use in forests. Forest Ecology and Management 2004; 193(1-2): 5-16. http://dx.doi.org/10.1016/j.foreco.2004.01.019.

Buriol GA, Streck NA, Petry C, Schneider FM. Transmissividade da radiação solar do polietileno de baixa densidade utilizado em estufa. Ciência Rural 1995; 25(1): 1-4. http://dx.doi.org/10.1590/S0103-84781995000100001.

Campoe OC, Stape JL, Nouvellon Y, Laclau JP, Bauerle WL, Binkley D et al. Stem production, light absorption and light use efficiency between dominant and non-dominant trees of Eucalyptus grandis across a productivity gradient in Brazil. Forest Ecology and Management 2013; 288: 14-20. http://dx.doi.org/10.1016/j.foreco.2012.07.035.

Caron BO, Medeiros SPL, Manfron PA, Schmidt D, Pommer SF, Bianchi C. Eficiência de conversão da radiação solar fotossinteticamente ativa interceptada em fitomassa de alface. Revista Brasileira de Agrometeorologia 2003; 11(2): 261-268.

Caron BO, Schmidt D, Manfron PA, Behling A, Eloy E, Busanello C. Eficiência do uso da radiação solar por plantas Ilex paraguariensis A. St. Hil. cultivadas sob sombreamento e a pleno sol. Ciência Florestal 2014; 24(2): 1-9. http://dx.doi.org/10.5902/1980509814563.

Caron BO, Schmidt D, Medeiros SLP, Heldwein AB, Manfron PA. Eficiência de conversão da radiação solar fotossinteticamente ativa e distribuição de fitomassa produzida no meloeiro cultivado em estufa plástica na primavera. Revista Brasileira de Agrometeorologia 2002; 10(2): 215-219.

Caron BO, Souza VQ, Trevisan R, Behling A, Schmidt D, Bamberg R et al. Eficiência de conversão da radiação fotossinteticamente ativa interceptada em fitomassa de mudas de eucalipto. Revista Árvore 2012; 36(5): 833-842. http://dx.doi.org/10.1590/S0100-67622012000500005.

Close DC, Battaglia M, Davidson NJ, Beadle CL. Within-canopy of nitrogen and photosynthetic activity of Eucalyptus nitens and Eucalyptus globulus in response to nitrogen nutrition. Australian Journal of Botany 2004; 52(1): 133-140. http://dx.doi.org/10.1071/BT03027.

Dantas BF, Lopes AP, Silva FFS, Lúcio AA, Batista PF, Pires MMML et al. Taxas de crescimento de mudas de catingueira submetidas a diferentes substratos e sombreamentos. Revista Árvore 2009; 33(3): 413-423. http://dx.doi.org/10.1590/S0100-67622009000300003.

Dewar RC. Information theoretic explanation of maximum entropy production, the fluctuation theorem and self-organized criticality in non-equilibrium stationary states. Journal of Physics. A, Mathematical and General 2003; 36: 631-641. http://dx.doi.org/10.1088/0305-4470/36/3/303.

Ehrenbergerová L, Cienciala E, Kučera A, Guy L, Habrová H. Carbon stock in agroforestry coffee plantations with different shade trees in Villa Rica, Peru. Agroforestry Systems 2016; 90(3): 433-445. http://dx.doi.org/10.1007/s10457-015-9865-z.

Farias JRB, Bergamaschi H, Martins SR. Efeito da cobertura plástica sobre a radiação solar. Revista Brasileira de Agrometeorologia 1993; 1(1): 31-36.

Gallo KP, Daughtry CST, Wiegand CL. Errors in measuring absorbed and computing crop radiation use efficiency. Agronomy Journal 1993; 85(6): 1222-1228. http://dx.doi.org/10.2134/agronj1993.00021962008500060024x.

Gomes JM, Couto L, Leite HG, Xavier A, Garcia SLR. Crescimento de mudas de Eucalyptus grandis em diferentes tamanhos de tubetes e fertilização N-P-K. Revista Árvore 2003; 27(2): 113-127. http://dx.doi.org/10.1590/S0100-67622003000200001.

Green DS, Erickson JE, Kruger EL. Foliar morphology and canopy nitrogen as predictors of light-use efficiency in terrestrial vegetation. Agricultural and Forest Meteorology 2003; 115(3-4): 163-171. http://dx.doi.org/10.1016/S0168-1923(02)00210-1.

Hammer GL, Vanderlip RL. Genotypeby- environment interaction in grain sorghum - I: effects of temperature on radiation use efficiency. Crop Science 1989; 29(2): 370-376. http://dx.doi.org/10.2135/cropsci1989.0011183X002900020028x.

Heuvelink E. Growth, development and yield of a tomato crop: periodic destructive measurements in a greenhouse. Scientia Horticulturae 1995; 61(1-2): 77-99. http://dx.doi.org/10.1016/0304-4238(94)00729-Y.

Hung TT, Almeida AC, Eyles A, Mohammed C. Predicting productivity of Acacia hybrid plantations for a range of climates and soils in Vietnam. Forest Ecology and Management 2016; 367: 97-111. http://dx.doi.org/10.1016/j.foreco.2016.02.030.

Jiang ACD, Gao HY, Zou Z, Jiang GM, Li LH. Leaf orientation, photorespiration and xanthophyll cycle protect young soybean leaves against high irradiance in field. Environmental and Experimental Botany 2004; 30(2): 1-10.

Landsberg JJ, Waring RH. A generalized model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management 1997; 95(3): 209-228. http://dx.doi.org/10.1016/S0378-1127(97)00026-1.

Lecoeur J, Ney B. Change with time in potential radiation-use efficiency in field pea. European Journal of Agronomy 2003; 19(1): 91-105. http://dx.doi.org/10.1016/S1161-0301(02)00019-9.

Maluf JRT. Nova classificação climática do Estado do Rio Grande do Sul. Revista Brasileira de Agrometeorologia 2000; 8: 141-150.

Manzanares M, Tenorio JL, Manzanares P, Ayerbe L. Yield and development of kenaf (Hibiscus cannabinus L.) crop in relation to water and interception radiation. Biomass and Bioenergy 1993; 5(5): 337-345. http://dx.doi.org/10.1016/0961-9534(93)90013-T.

Mayers JD, Lawn RJ, Byth DE. Agronomic studies on soybean (Glycine max (L.) Merrill) in the dry seasons of the tropics. II. Interaction of sowing date and sowing density. Australian Journal of Agricultural Research 1991; 42(7): 1093-1107. http://dx.doi.org/10.1071/AR9911093.

Monteith JL, Moss CJ. Climate and the efficiency of crop production en Britain. Proceedings of the Royal Society of London 1977; 281(980): 277-294. http://dx.doi.org/10.1098/rstb.1977.0140.

Müller AG, Bergamaschi H. Eficiências de interceptação, absorção e uso da radiação fotossinteticamente ativa pelo milho (Zea mays L.), em diferentes disponibilidades hídricas e verificação do modelo energético de estimativa da massa seca acumulada. Revista Brasileira de Agrometeorologia 2005; 13(1): 27-33.

Netto SP, Sanquetta CR, Caron BO, Behling A, Simon AA, Corte APD et al. Ground level photosynthetically active radiation dynamics in stands of Acacia mearnsii De Wild. Anais da Academia Brasileira de Ciencias 2015; 87(3): 1833-1845. PMid:26375018. http://dx.doi.org/10.1590/0001-3765201520140080.

Pandolfo C. Parâmetros básicos para uso na modelagem do rendimento de matéria seca de alfafa (Medicago sativa L.) [dissertação]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 1995.

Quentin AG, Beadle CL, O’Grady AP, Pinkard EA. Effects of partial defoliation on closed canopy Eucalyptus globulus Labilladière: growth, biomass allocation and carbohydrates. Forest Ecology and Management 2011; 261(3): 695-702. http://dx.doi.org/10.1016/j.foreco.2010.11.028.

Radin B, Bergamaschi H, Reisser C Jr, Barni NA, Matzenauer R, Didoné IA. Eficiência de uso da radiação fotossinteticamente ativa pela cultura do tomateiro em diferentes ambientes. Pesquisa Agropecuária Brasileira 2003; 38(9): 1017-1023. http://dx.doi.org/10.1590/S0100-204X2003000900001.

Raes D, Steduto P, Hsiao TC, Fereres E. AquaCrop – The FAO crop model to simulate yield response to water: reference manual. Roma: FAO; 2009.

Resende SV, Crepaldi IC, Pelacani CR, Brito AL. Influência da luz e substrato na germinação e desenvolvimento inicial de duas espécies de Calliandra Benth: (Mimosoideae - Leguminosae) endêmicas da Chapada Diamantina, Bahia. Revista Árvore 2011; 35(1): 107-117. http://dx.doi.org/10.1590/S0100-67622011000100013.

Sanquetta CR, Behling A, Corte AP, Cadori GC, Costa S Jr, Macedo JHP. Eficiência de conversão da radiação fotossintética interceptada em Fitomassa de mudas de Eucalyptus dunii Maiden em função da densidade de plantas e do ambiente de cultivo. Scientia Forestalis 2014; 42(104): 573-580.

Sas Institute. Getting started with the SAS learning edition. Cary: SAS Institute Inc.; 2003.

Silva BMS, Lima JD, Dantas VAV, Moraes WS, Sabonaro DZ. Efeito da luz no crescimento de mudas de Hymenaea parvifolia Huber. Revista Árvore 2007; 31(6): 1019-1026. http://dx.doi.org/10.1590/S0100-67622007000600006.

Sinclair TR, Muchow RC. Radiation use efficiency. Advances in Agronomy 1999; 65: 215-265. http://dx.doi.org/10.1016/S0065-2113(08)60914-1.

Stape JL, Binkley D, Ryan MG. Production and carbon allocation in a clonal Eucalyptus plantation with water and nutrient manipulations. Forest Ecology and Management 2008; 255(3-4): 920-930. http://dx.doi.org/10.1016/j.foreco.2007.09.085.

Stewart DW, Costa C, Dwyer LM, Smith DL, Hamilton RI, Ma BL. Canopy structure, light interception and photosynthesis in maize. Agronomy Journal 2003; 95(6): 1465-1474. http://dx.doi.org/10.2134/agronj2003.1465.

Taiz L, Zeiger E. Plant physiology. Porto Alegre: Artmed; 2013.

Varlet-Grancher C, Gosse G, Chartier M, Sinoquet H, Bonhomme R, Allirand JM. Mise au point: rayonnement solaire absorbé ou intercepté par um couvert végétal. Agronomie 1989; 9(5): 419-439. http://dx.doi.org/10.1051/agro:19890501.
 

5a7c85060e8825c760b51847 floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections